Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1321: 343042, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155097

RESUMO

BACKGROUND: The local pH change mediated by the pathogenic bacterial species Streptococcus mutans plays a significant role in the corrosion of hydroxyapatite (HA) present in the tooth in the dynamic oral cavity. The acid produced by the bacteria decreases the local pH and releases Ca2+ ions from the HA. We studied the bacteria-mediated demineralization of HA by scanning electrochemical microscopy (SECM) after growing S. mutans biofilm on HA for 7 days. RESULTS: We notably developed a triple-function SECM-compatible tip that could be positioned above the biofilm. It can also measure the pH and [Ca2+] change simultaneously above the biofilm-HA substrate. The triple-function SECM tip is a combination of a potentiometric pH sensor deposited with iridium oxide and a dual-function carbon-based Ca2+ ion-selective membrane electrode with a slope of 67 mV/pH and 34.3 mV/log [Ca2+], respectively. The distance-controlled triple-function SECM tip monitored real-time pH and [Ca2+] changes 30 µm above the S. mutans biofilm. The high temporal resolution pH data demonstrated that after approximately 20 min of sucrose addition, S. mutans started to produce acid to titrate the solution buffer, causing a pH change from 7.2 to 6.5 for HA and from 7.2 to 5 for the glass substrate. We observed that, after 30 min of acid production, ∼300 µM of Ca2+ ions were increased at pH 6.5 above the biofilm surface as a result of the pH change in the local microenvironment. After the release of Ca2+ from HA, the pH environment again shifted toward the neutral side, from 6.5 to 7.2. Therefore, precipitation of Ca2+ happens at the top of the biofilm, thus corroding the HA from underneath. For a glass substrate, in contrast, no Ca2+ ions were released, and the pH did not change back to 7.2. We were able to observe the dynamics of the HA demineralization-remineralization process simultaneously with our newly developed triple-function SECM tip or microprobe. SIGNIFICANCE: This technique could notably advance the study of similar complex processes, such as bacteria-mediated corrosion in biomedical and environmental contexts.


Assuntos
Biofilmes , Cálcio , Carbono , Durapatita , Microeletrodos , Streptococcus mutans , Streptococcus mutans/metabolismo , Concentração de Íons de Hidrogênio , Durapatita/química , Cálcio/química , Cálcio/metabolismo , Carbono/química , Corrosão , Eletrodos Seletivos de Íons
2.
Small ; : e2401989, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855993

RESUMO

The minimally invasive deployment of scaffolds is a key safety factor for the regeneration of cartilage and bone defects. Osteogenesis relies primarily on cell-matrix interactions, whereas chondrogenesis relies on cell-cell aggregation. Bone matrix expansion requires osteoconductive scaffold degradation. However, chondrogenic cell aggregation is promoted on the repellent scaffold surface, and minimal scaffold degradation supports the avascular nature of cartilage regeneration. Here, a material satisfying these requirements for osteochondral regeneration is developed by integrating osteoconductive hydroxyapatite (HAp) with a chondroconductive shape memory polymer (SMP). The shape memory function-derived fixity and recovery of the scaffold enabled minimally invasive deployment and expansion to fill irregular defects. The crystalline phases on the SMP surface inhibited cell aggregation by suppressing water penetration and subsequent protein adsorption. However, HAp conjugation SMP (H-SMP) enhanced surface roughness and consequent cell-matrix interactions by limiting cell aggregation using crystal peaks. After mouse subcutaneous implantation, hydrolytic H-SMP accelerated scaffold degradation compared to that by the minimal degradation observed for SMP alone for two months. H-SMP and SMP are found to promote osteogenesis and chondrogenesis, respectively, in vitro and in vivo, including the regeneration of rat osteochondral defects using the binary scaffold form, suggesting that this material is promising for osteochondral regeneration.

3.
Phys Rev Lett ; 132(21): 216903, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856288

RESUMO

Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 µm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.

4.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

5.
ACS Photonics ; 10(12): 4329-4339, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145170

RESUMO

While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 µm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).

6.
Artigo em Inglês | MEDLINE | ID: mdl-38124366

RESUMO

Objective: We investigated how treating large brain metastasis (LBM) using two-day fraction gamma knife radiosurgery (GKRS) affects tumor control and patient survival. A prescription dose of 10.3 Gy was applied for two consecutive days, with a biologically effective dose (BED) equivalent to a tumor single-fraction dose of 16.05 Gy and a brain single-fraction dose of 15.12 Gy. Methods: Between November 2017 and December 2021, 42 patients (mean age: 68.3 years, range: 50-84 years, male: 29 [69.1%], female: 13 [30.9%]) with 44 tumors underwent two-day fraction GKRS to treat large volume brain metastasis. The main cancer types were non-small cell lung cancer (NSCLC, N=16), small cell lung cancer (SCLC, N=7), colorectal cancer (N=7), breast cancer (N=3), gastric cancer (N=2), and other cancers (N=7). Twenty-one (50.0%) patients had a single LBM, nineteen (46.3%) had a single LBM and other metastasi(e)s, and two had two (4.7%) large brain metastases. At the time of the two-day fraction GKRS, the tumors had a mean volume of 23.1 cc (range: 12.5-67.4). on each day, radiation was administered at a dose of 10.3 Gy, mainly using a 50% isodose-line. Results: We obtained clinical and magnetic resonance imaging (MRI) follow-up data for 34 patients (81%) with 35 tumors, who had undergone two-day fraction GKRS. These patients did not experience acute or late radiation-induced complications during follow-up. The median and mean progression-free survival (PFS) periods were 188 and 194 days, respectively. The local control rates at 6, 9, and 12 months were 77%, 40%, and 34%, respectively. The prognostic factors related to PFS were prior radiotherapy (P = 0.019) and lung cancer origin (P = 0.041). Other factors such as tumor volumes, each isodose volumes, and peri-GKRS systemic treatment were not significantly related to PFS. The overall survival period of the 44 patients following repeat SRS ranged from 15-878 days (median: 263±38 days, mean: 174±43) after the two-day fraction GKRS. Eight patients (18.2%) were still alive. Conclusion: Considering the unsatisfactory tumor control, a higher prescription dose should be needed in this procedure as a salvage management. Moreover, in the treatment for LBM with fractionated SRS, using different isodoses and prescription doses at the treatment planning for LBMs should be important. However, this report might be a basic reference with the same fraction number and prescription dose in the treatment for LBMs with frame-based SRS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA