Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2308862, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252810

RESUMO

Pastes and "foams" containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty-like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide-lined air "pockets" into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4-5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors "grow," fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.

2.
ACS Nano ; 17(15): 14750-14760, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486215

RESUMO

Tetrathiafulvalene (TTF)-based reactive mesogens (TTF-E and TTF-T) are synthesized, self-assembled, uniaxially oriented, and polymerized for the development of encryptable electrochromic smart windows. Electrochemical and spectroscopic experiments prove that the self-assembled TTF mixture (TTFM, TTF-E:TTF-T = 1:1) can reversibly switch the absorption wavelength of the TTF chromophore according to the redox reactions. Based on the identification of the phase transition and crystallographic structure, uniaxially oriented hierarchical nanostructures are easily constructed on the macroscopic area by simple coating and a self-assembly process. Subsequent polymerization of hierarchical nanostructures of TTFM significantly enhances thermal and mechanical stabilities and makes it possible for them to be fabricated as an electrochromic device. The angularly dependent correlation between the anisotropy of mesogens and the linearly polarized light allow us to demonstrate TTFM as smart windows capable of various optical security applications, including privacy protection and information encryption.

3.
ACS Appl Mater Interfaces ; 15(20): 24681-24692, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163756

RESUMO

Microfiber fabrication via wet-spinning of lyotropic liquid crystals (LCs) with anisotropic nanomaterials has gained increased attention due to the microfibers' excellent physical/chemical properties originating from the unidirectional alignment of anisotropic nanomaterials along the fiber axis with high packing density. For wet-spinning of the microfibers, however, preparing lyotropic LCs by achieving high colloidal stability of anisotropic nanomaterials, even at high concentrations, has been a critically unmet prerequisite, especially for recently emerging nanomaterials. Here, we propose a cationically charged polymeric stabilizer that can efficiently be adsorbed on the surface of boron nitride nanotubes (BNNTs), which provide steric hindrance in combination with Coulombic repulsion leading to high colloidal stability of BNNTs up to 22 wt %. The BNNT LCs prepared from the dispersions with various stabilizers were systematically compared using optical and rheological analysis to optimize the phase behavior and rheological properties for wet-spinning of the BNNT LCs. Systematic optical and mechanical characterizations of the BNNT microfibers with aligned BNNTs along the fiber axis revealed that properties of the microfibers, such as their tensile strength, packing density, and degree of BNNT alignment, were highly dependent on the quality of BNNT LCs directly related to the types of stabilizers.

4.
Small ; 19(26): e2300689, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36950756

RESUMO

Solution-processable conducting polymers (CPs) are a compelling alternative to inorganic counterparts because of their potential for tuning chemical properties and creating flexible organic electronics. CPs, which typically comprise either only an electron donor (D) or its alternative combinations with an electron acceptor (A), exhibit charge transfer behavior between the units, resulting in an electrical conductivity suitable for utilization in electronic devices and for energy storage applications. However, the energy storage behavior of CPs with a sequence of electron acceptors (A-A), has rarely been investigated, despite their promising lower band gap and higher charge carrier mobility. Utilizing the aforesaid concept herein, four CPs featuring benzodithiophenedione (BDD), and diketopyrrolepyrrole (DPP) are synthesized. Among them, the BDDTH-DPPEH polymer exhibited the highest specific capacitance of 126.5 F g-1 at a current density of 0.5 A g-1 in an organic electrolyte over a wide potential window of -0.6-1.4 V. Notably, the supercapacitor properties of the polymeric electrode materials improved with increasing conjugation length by adding thiophene donor units and shortening the alkyl chain lengths. Furthermore, a symmetric supercapacitor device fabricated using BDDTH-DPPEH exhibited a high-power density of 4000 W kg-1 and an energy density of 31.66 Wh kg-1 .

5.
ACS Appl Mater Interfaces ; 14(32): 37110-37119, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35930688

RESUMO

Liquid metal is a promising conductor material for producing soft and stretchable circuit "boards" that can enable next-generation electronics by electrically connecting and mechanically supporting electronic components. While liquid metal in general can be used to fabricate soft and stretchable circuits, magnetic liquid metal is appealing because it can be used for self-healing electronics and actuators by external magnetic fields. Liquid metal can be rendered into particles that can then be used for sensors and catalysts through sonication. We used this feature to produce "novel" conductive and magnetic particles. Mixing ferromagnetic iron particles into the liquid metal (gallium) produces conductive ferrofluids that can be rendered into gallium-coated iron particles by sonication. The gallium shell of the particles is extremely soft, while the rigid iron core can induce high friction in response to mechanical pressure; thus, hand-sintering of the particles can be used to directly write the conductive traces when the particles are cast as a film on elastic substrates. The surface topography of the particles can be manipulated by forming GaOOH crystals through sonication in DI water, thus resulting in nonwettable circuit boards. These gallium-coated iron particles dispersed in uncured elastomer can be assembled to form conductive microwires with the application of magnetic fields.

6.
Macromol Rapid Commun ; 43(21): e2200473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35791749

RESUMO

Conjugated polymers and small molecules (SMs) with fused electron-rich and electron-deficient building blocks are promising materials for low-cost organic electronic devices. Benzotrithiophene (BTT) is one such electron-rich hybrid building block composed of three fused thiophene moieties with an extended π-system that has been widely used to synthesize a variety of electronic materials. Additionally, BTT has a planar and sulfur-rich core with a number of distinct advantages, including structural diversity, tunable electro-optical properties and exceptional hole-transport behavior. So far, four BTT-based isomers have been synthesized on a gram scale from seven isomeric structures, three of which are symmetric (BTT1-3) and one of which is asymmetric (BTT5), for use in a variety of optoelectronic applications. However, no report summarizing the progress of BTT-based semiconductors for electronic applications is available. The current review presents an overview of the recent developments in BTT-based monomers, polymers and SMs, as well as their applications in energy harvesting. Additionally, recent advances on charge transport devices, most notably organic solar cells (OSCs), organic thin field-effect transistors (OTFTs), and perovskite solar cells (Pero-SCs) are also surveyed and summarized. It is anticipated that this comprehensive review will stimulate further research and development of future BTT-based electronic materials, particularly for low-cost and high-performance organic electronic devices.

7.
Polymers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215624

RESUMO

In this work, we introduce liquid metal patterned stretchable and soft capacitive sensor with enhanced dielectric properties enabled by graphite nanofiber (GNF) fillers dispersed in polydimethylsiloxane (PDMS) substrate. We oxidized gallium-based liquid metal that exhibited excellent wetting behavior on the surface of the composites to enable patterning of the electrodes by a facile stencil printing. The fluidic behavior of the liquid metal electrode and modulated dielectric properties of the composite (k = 6.41 ± 0.092@6 wt % at 1 kHz) was utilized to fabricate stretchable and soft capacitive sensor with ability to distinguish various hand motions.

8.
Micromachines (Basel) ; 14(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36677078

RESUMO

Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) fillers. While the silicone is mixed with the liquid metal by shear mixing, the liquid metal is rendered into small droplets stabilized by an oxide, resulting in a non-conductive liquid metal elastomer. To attain electrical conductivity, localized mechanical pressure is applied using a stylus onto the thermally cured elastomer, resulting in the formation of a handwritten conductive trace by rupturing the oxide layer of the liquid metal droplets and subsequent percolation. Although this approach has been introduced previously, the liquid metal dispersed elastomers developed here are compelling because of their ultra-stretchable (elongation at break of 4000%) and ultrasoft (Young's modulus of <0.1 MPa) mechanical properties. The handwritten conductive trace in the elastomers can maintain metallic conductivity when strained; however, remarkably, we observed that the electrical conductivity is anisotropic upon parallel and perpendicular strains to the conductive trace. This anisotropic conductivity of the liquid metal elastomer film can manipulate the locomotion of a robot by routing the power signals between the battery and the driving motor of a robot upon parallel and perpendicular strains to the hand-written circuit. In addition, the liquid metal dispersed elastomers have a high degree of deformation and adhesion; thus, they are suitable for use as a wearable sensor for monitoring various body motions.

9.
Biomed Microdevices ; 24(1): 2, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792679

RESUMO

Over the last few years, the microfluidics phenomenon coupled with the Internet of Things (IoT) using innovative nano-functional materials has been recognized as a sustainable and economical tool for point-of-care testing (POCT) of various pathogens influencing human health. The sensors based on these phenomena aim to be designed for cost-effectiveness, make it handy, environment-friendly, and get an accurate, easy, and rapid response. Considering the burgeoning importance of analytical devices in the healthcare domain, this review paper is based on the gist of sensing aspects of the microfabricated paper-based analytical devices (µPADs). The article discusses the various used design methodologies and fabrication approaches and elucidates the recently reported surface modification strategies, detection mechanisms viz., colorimetric, electrochemical, fluorescence, electrochemiluminescence, etc. In a nutshell, this article summarizes the state-of-the-art research work carried out over the nano functionalized paper-based analytical devices and associated challenges/solutions in the point of care testing domain.


Assuntos
Internet das Coisas , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Papel , Testes Imediatos
10.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372010

RESUMO

In this work we describe a soft and ultrastretchable fiber with a magnetic liquid metal (MLM) core for electrical switches used in remote magnetic actuation. MLM was prepared by removing the oxide layer on the liquid metal and subsequent mixing with magnetic iron particles. We used SEBS (poly[styrene-b-(ethylene-co-butylene)-b-styrene]) and silicone to prepare stretchable elastic fibers. Once hollow elastic fibers form, MLM was injected into the core of the fiber at ambient pressure. The fibers are soft (Young's modulus of 1.6~4.4 MPa) and ultrastretchable (elongation at break of 600~5000%) while maintaining electrical conductivity and magnetic property due to the fluidic nature of the core. Magnetic strength of the fibers was characterized by measuring the maximum effective distance between the magnet and the fiber as a function of iron particle concentration in the MLM core and the polymeric shell. The MLM core facilitates the use of the fiber in electrical switches for remote magnetic actuation. This ultrastretchable and elastic fiber with MLM core can be used in soft robotics, and wearable and conformal electronics.

11.
ACS Appl Mater Interfaces ; 13(30): 36644-36652, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310104

RESUMO

In this work, a facile and cost-effective approach to assemble metallic wires into two-dimensional (2D) and three-dimensional (3D) freestanding geometries by room-temperature welding is demonstrated. The low melting point of gallium (29.8 °C) enables the welding at room temperature without the aid of high-energy sources required for high-melting-point metals and alloys. The welding enables assembly of solid gallium wires into 2D and 3D geometries that could create freestanding architectures with multiple junctions along any inclined direction. These 2D and 3D freestanding metallic structures are freeze-cast in soft elastomers to obtain stretchable and soft devices: a 2D stretchable resistive and capacitive sensor patterned with parallel metal lines, a 2D stretchable capacitive sensor patterned with an interdigitated metal structure with capacitive changes on stretching in both x- and y-axes, and a 3D compressive sensor by assembly of liquid metal helices, which could sense foot pressure compression. We also developed a facile method to interconnect between soft circuits and external electronics, suppressing stress during mechanical deformation.

12.
ACS Appl Mater Interfaces ; 13(26): 31206-31214, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162200

RESUMO

A series of diketopyrrolopyrrole (DPP) luminogen amphiphiles were newly designed and synthesized by a single-step anionic exchange reaction for controlling the photoluminescence properties in both solution and solid states. Multicolor emission in response to thermal, mechanical, and chemical stimuli was successfully demonstrated by engineering well-defined supramolecular assemblies. Phase transformation from the metastable amorphous solid to the stable orthorhombic crystal of [DP-Im][Br] provided the reversibly patternable light emission. Self-organization into the smectic crystalline phase of [DP-Im][TFSI] allowed us to show the linearly polarized light emission. By simultaneously applying [DP-Im][Br] and [DP-Im][TFSI], we demonstrated the fabrication of smart sensors for packaging of food or vaccines that can detect thermal attacks.

13.
ACS Appl Mater Interfaces ; 13(24): 28916-28924, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34102837

RESUMO

Shape memory composites are fascinating materials with the ability to preserve deformed shapes that recover when triggered by certain external stimuli. Although elastomers are not inherently shape memory materials, the inclusion of phase-change materials within the elastomer can impart shape memory properties. When this filler changes the phase from liquid to solid, the effective modulus of the polymer increases significantly, enabling stiffness tuning. Using gallium, a metal with a low melting point (29.8 °C), it is possible to create elastomeric materials with metallic conductivity and shape memory properties. This concept has been used previously in core-shell (gallium-elastomer) fibers and foams, but here, we show that it can also be implemented in elastomeric films containing microchannels. Such microchannels are appealing because it is possible to control the geometry of the filler and create metallically conductive circuits. Stretching the solidified metal fractures the fillers; however, they can heal by body heat to restore conductivity. Such conductive, shape memory sheets with healable conductivity may find applications in stretchable electronics and soft robotics.

14.
ACS Appl Mater Interfaces ; 13(19): 22884-22890, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955741

RESUMO

For flexible displays, there is a desperate need for a broadband coatable polarizer that can absorb light in a specific direction. Conventional polarizers fabricated by the polymer stretching process are too thick (50-200 µm) to be used as polarizers that can be applied to antireflective films in flexible displays. For the development of the broadband coatable thin film polarizer, diacetylene (DA) amphiphiles containing I- or I3- are newly designed and synthesized, and the content of DA amphiphiles in the 4,6-decadiyne solvent is optimized to form a lyotropic liquid crystal (LLC) phase. Topochemical polymerization of uniaxially oriented iodine-based DA not only stabilizes the film but also broadens the polarization light region from 350 to 700 nm. The transfer and amplification of iodine and DA functions in uniaxially oriented thin films enable the fabrication of broadband coatable thin film polarizers.

15.
ACS Appl Mater Interfaces ; 13(11): 13637-13647, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33703879

RESUMO

Utilizing a newly programmed and synthesized heat storage mesogen (HSM) and reactive mesogen (RM), advanced heat managing polymer alloys that exhibit high thermal conductivity, high latent heat, and phase transition at high temperatures were developed for use as smart thermal energy harvesting and reutilization materials. The RM in the heat-managing RM-HSM polymer alloy was polymerized to form a robust polymeric network with high thermal conductivity. The phase-separated HSM domains between RM polymeric networks absorbed and released a lot of thermal energy in response to changes in the surrounding temperature. For the fabrication of smart heat-managing RM-HSM polymer alloys, the composition and polymerization temperature were optimized based on the constructed phase diagram and thermal energy managing properties of the RM-HSM mixture. From morphological investigation and thermal analysis, it was realized that the heat storage capacity of polymer alloys depends on the size of the phase-separated HSM domain. The structure-morphology-property relationship of the heat managing polymer alloys was built based on the combined techniques of thermal, scattering, and morphological analysis. The newly developed mesogen-based polymer alloys can be used as smart thermal energy-harvesting and reutilization materials.

16.
Adv Mater ; 32(39): e2003980, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794285

RESUMO

The development of smart inks that change color and transparency in response to external stimuli is very important for various fields, from modern art to safety and anticounterfeiting technology. A uniaxially oriented diacetylene thin film on a macroscopic area is obtained by coating, self-assembling and topochemical photopolymerizing of imidazolium-functionalized diacetylenes (M-DA and T-DA) and 4,6-decadiyne ink (70 wt%:20 wt%:10 wt%) exhibiting a lyotropic smectic A liquid-crystalline phase at room temperature. The color and transparency of letters and symbols written with the DA-based secret inks change reversibly from blue to red as well as from colorless transparent to black opaque depending on the temperature and polarization axis. A secret code written with thermoresponsive and polarization-dependent secret inks consisting of imidazolium-functionalized diacetylenes is successfully deciphered by wearing polaroid glasses and holding a burning torch.

17.
Adv Sci (Weinh) ; 6(21): 1901579, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728290

RESUMO

Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.

18.
ACS Appl Mater Interfaces ; 10(37): 31560-31567, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148352

RESUMO

Polymer conductors that are solution-processable provide an opportunity to realize low-cost organic electronics. However, coating sequential layers can be hindered by poor surface wetting or dissolution of underlying layers. This has led to the use of transfer printing where solid film inks are transferred from a donor substrate to partially fabricated devices using a stamp. This approach typically requires favorable adhesion differences between the stamp, ink, and receiving substrate. Here, we present a shear-assisted organic printing (SHARP) technique that employs a shear load on a post-less polydimethylsiloxane (PDMS) elastomer stamp to print large-area polymer films that can overcome large unfavorable adhesion differences between the stamp and receiving substrate. We explore the limits of this process by transfer printing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films with varied formulation that tune the adhesive fracture energy. Using this platform, we show that the SHARP process is able to overcome a 10-fold unfavorable adhesion differential without the use of a patterned PDMS stamp, enabling large-area printing. The SHARP approach is then used to print PEDOT:PSS films in the fabrication of high-performance semitransparent organic solar cells.

19.
Small ; 14(20): e1704460, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29659190

RESUMO

Buckling instabilities generate microscale features in thin films in a facile manner. Buckles can form, for example, by heating a metal/polymer film stack on a rigid substrate. Thermal expansion differences of the individual layers generate compressive stress that causes the metal to buckle over the entire surface. The ability to dictate and confine the location of buckle formation can enable patterns with more than one length scale, including hierarchical patterns. Here, sacrificial "ink" patterned on top of the film stack localizes the buckles via two mechanisms. First, stiff inks suppress buckles such that only the non-inked regions buckle in response to infrared light. The metal in the non-inked regions absorbs the infrared light and thus gets sufficiently hot to induce buckles. Second, soft inks that absorb light get hot faster than the non-inked regions and promote buckling when exposed to visible light. The exposed metal in the non-inked regions reflects the light and thus never get sufficiently hot to induce buckles. This second method works on glass substrates, but not silicon substrates, due to the superior thermal insulation of glass. The patterned ink can be removed, leaving behind hierarchical patterns consisting of regions of buckles among non-buckled regions.

20.
ACS Appl Mater Interfaces ; 10(13): 11261-11268, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29578686

RESUMO

This paper identifies and characterizes silicone elastomers that are well-suited for fabricating highly stretchable and tear-resistant devices that require interfacial bonding by plasma or UV ozone treatment. The ability to bond two or more pieces of molded silicone is important for creating microfluidic channels, chambers for pneumatically driven soft robotics, and other soft and stretchable devices. Sylgard-184 is a popular silicone, particularly for microfluidic applications. However, its low elongation at break (∼100% strain) and moderate tear strength (∼3 N/mm) make it unsuitable for emerging, mechanically demanding applications of silicone. In contrast, commercial silicones, such as Dragon Skin, have excellent mechanical properties yet are difficult to plasma-bond, likely because of the presence of silicone oils that soften the network yet migrate to the surface and interfere with plasma bonding. We found that extracting silicone oligomers from these soft networks allows these materials to bond but only when the Shore hardness exceeds a value of 15 A. It is also possible to mix highly stretchable silicones (Dragon Skin and Ecoflex) with Sylgard-184 to create silicones with intermediate mechanical properties; interestingly, these blends also only bond when the hardness exceeds 15 A. Eight different Pt-cured silicones were also screened; again, only those with Shore hardness above 15 A plasma-bond. The most promising silicones from this study are Sylgard-186 and Elastosil-M4130 and M4630, which exhibit a large deformation (>200% elongation at break), high tear strength (>12 N/mm), and strong plasma bonding. To illustrate the utility of these silicones, we created stretchable electrodes by injecting a liquid metal into microchannels created using such silicones, which may find use in soft robotics, electronic skin, and stretchable energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...