Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644688

RESUMO

Pinnipeds (seals, sea lions, walruses, and their fossil relatives) are one of the most successful mammalian clades to live in the oceans. Despite a well-resolved molecular phylogeny and a global fossil record, a complete understanding of their macroevolutionary dynamics remains hampered by a lack of formal analyses that combine these two rich sources of information. We used a meta-analytic approach to infer the most densely sampled pinniped phylogeny to-date (36 recent and 93 fossil taxa) and used phylogenetic paleobiological methods to study their diversification dynamics and biogeographic history. Pinnipeds mostly diversified at constant rates. Walruses however experienced rapid turnover in which extinction rates ultimately exceeded speciation rates from 12-6 Ma, possibly due to changing sea-levels and/or competition with otariids (eared seals). Historical biogeographic analyses including fossil data allowed us to confidently identify the North Pacific and the North Atlantic (plus or minus Paratethys) as the ancestral ranges of Otarioidea (eared seals + walrus) and crown phocids (earless seals), respectively. Yet, despite the novel addition of stem pan-pinniped taxa, the region of origin for Pan-Pinnipedia remained ambiguous. These results suggest further avenues of study in pinnipeds and provide a framework for investigating other groups with substantial extinct and extant diversity.

2.
Curr Biol ; 34(2): 273-285.e3, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38118449

RESUMO

Toothed whales (odontocetes) emit high-frequency underwater sounds (echolocate)-an extreme and unique innovation allowing them to sense their prey and environment. Their highly specialized mandible (lower jaw) allows high-frequency sounds to be transmitted back to the inner ear. Echolocation is evident in the earliest toothed whales, but little research has focused on the evolution of mandibular form regarding this unique adaptation. Here, we use a high-density, three-dimensional geometric morphometric analysis of 100 living and extinct cetacean species spanning their ∼50-million-year evolutionary history. Our analyses demonstrate that most shape variation is found in the relative length of the jaw and the mandibular symphysis. The greatest morphological diversity was obtained during two periods of rapid evolution: the initial evolution of archaeocetes (stem whales) in the early to mid-Eocene as they adapted to an aquatic lifestyle, representing one of the most extreme adaptive transitions known, and later on in the mid-Oligocene odontocetes as they became increasingly specialized for a range of diets facilitated by increasingly refined echolocation. Low disparity in the posterior mandible suggests the shape of the acoustic window, which receives sound, has remained conservative since the advent of directional hearing in the aquatic archaeocetes, even as the earliest odontocetes began to receive sounds from echolocation. Diet, echolocation, feeding method, and dentition type strongly influence mandible shape. Unlike in the toothed whale cranium, we found no significant asymmetry in the mandible. We suggest that a combination of refined echolocation and associated dietary specializations have driven morphology and disparity in the toothed whale mandible.


Assuntos
Evolução Biológica , Ecolocação , Animais , Baleias/anatomia & histologia , Audição , Som , Crânio/anatomia & histologia
4.
Curr Biol ; 33(9): 1787-1794.e3, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36990088

RESUMO

Adaptive landscapes are central to evolutionary theory, forming a conceptual bridge between micro- and macroevolution.1,2,3,4 Evolution by natural selection across an adaptive landscape should drive lineages toward fitness peaks, shaping the distribution of phenotypic variation within and among clades over evolutionary timescales.5 The location and breadth of these peaks in phenotypic space can also evolve,4 but whether phylogenetic comparative methods can detect such patterns has largely remained unexplored.6 Here, we characterize the global and local adaptive landscape for total body length in cetaceans (whales, dolphins, and relatives), a trait that spans an order of magnitude, across their ∼53-million-year evolutionary history. Using phylogenetic comparative methods, we analyze shifts in long-term mean body length7 and directional changes in average trait values8 for 345 living and fossil cetacean taxa. Remarkably, we find that the global macroevolutionary adaptive landscape of cetacean body length is relatively flat, with very few peak shifts occurring after cetaceans entered the oceans. Local peaks are more numerous and manifest as trends along branches linked to specific adaptations. These results contrast with previous studies using only extant taxa,9 highlighting the vital role of fossil data for understanding macroevolution.10,11,12 Our results indicate that adaptive peaks are dynamic and are associated with subzones of local adaptations, creating moving targets for species adaptation. In addition, we identify limits in our ability to detect some evolutionary patterns and processes and suggest that multiple approaches are required to characterize complex hierarchical patterns of adaptation in deep time.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Animais , Filogenia , Tamanho Corporal , Cetáceos/genética
6.
BMJ Case Rep ; 15(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319038

RESUMO

Pancreatic pseudocyst is a well-known complication of both acute and chronic pancreatitis. Although extension into other anatomical sites is common, extension into the retrofascial space causing an iliopsoas abscess is exceedingly rare. Although its low incidence creates a diagnostic challenge for clinicians, early diagnosis is essential to prevent significant complications and poor patient outcomes. We present a case of iliopsoas abscess with unusual culture fluid growth in the setting of acute on chronic pancreatitis secondary to extension of a pancreatic pseudocyst. We also offer a brief review of the literature and pathophysiology of the condition.


Assuntos
Mycobacterium abscessus , Pseudocisto Pancreático , Pancreatite Crônica , Abscesso do Psoas , Humanos , Pseudocisto Pancreático/complicações , Abscesso do Psoas/complicações , Pancreatite Crônica/complicações , Músculos
7.
Curr Biol ; 32(10): 2233-2247.e4, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35537454

RESUMO

The evolution of cetaceans (whales and dolphins) represents one of the most extreme adaptive transitions known, from terrestrial mammals to a highly specialized aquatic radiation that includes the largest animals alive today. Many anatomical shifts in this transition involve the feeding, respiratory, and sensory structures of the cranium, which we quantified with a high-density, three-dimensional geometric morphometric analysis of 201 living and extinct cetacean species spanning the entirety of their ∼50-million-year evolutionary history. Our analyses demonstrate that cetacean suborders occupy distinct areas of cranial morphospace, with extinct, transitional taxa bridging the gap between archaeocetes (stem whales) and modern mysticetes (baleen whales) and odontocetes (toothed whales). This diversity was obtained through three key periods of rapid evolution: first, the initial evolution of archaeocetes in the early to mid-Eocene produced the highest evolutionary rates seen in cetaceans, concentrated in the maxilla, frontal, premaxilla, and nasal; second, the late Eocene divergence of the mysticetes and odontocetes drives a second peak in rates, with high rates and disparity sustained through the Oligocene; and third, the diversification of odontocetes, particularly sperm whales, in the Miocene (∼18-10 Mya) propels a final peak in the tempo of cetacean morphological evolution. Archaeocetes show the fastest evolutionary rates but the lowest disparity. Odontocetes exhibit the highest disparity, while mysticetes evolve at the slowest pace, particularly in the Neogene. Diet and echolocation have the strongest influence on cranial morphology, with habitat, size, dentition, and feeding method also significant factors impacting shape, disparity, and the pace of cetacean cranial evolution.


Assuntos
Evolução Biológica , Ecolocação , Animais , Filogenia , Crânio/anatomia & histologia , Baleias/anatomia & histologia
8.
Curr Biol ; 31(11): 2404-2409.e2, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961784

RESUMO

Modern pinnipeds (true and eared seals) employ two radically different swimming styles, with true seals (phocids) propelling themselves primarily with their hindlimbs, whereas eared seals (otariids) rely on their wing-like foreflippers.1,2 Current explanations of this functional dichotomy invoke either pinniped diphyly3-5 or independent colonizations of the ocean by related but still largely terrestrial ancestors.6-8 Here, we show that pinniped swimming styles form an anatomical, functional, and behavioral continuum, within which adaptations for forelimb swimming can arise directly from a hindlimb-propelled bauplan. Within phocids, southern seals (monachines) show a convergent trend toward wing-like, hydrodynamically efficient forelimbs used for propulsion during slow swimming, turning, bursts of speed, or when initiating movement. This condition is most evident in leopard seals, which have well-integrated foreflippers with little digit mobility, reduced claws, and hydrodynamic characteristics comparable to those of forelimb-propelled otariids. Using monachines as a model, we suggest that the last common ancestor of modern seals may have been hindlimb-propelled and aquatically adapted, thus resolving the apparent contradiction at the root of pinniped evolution.


Assuntos
Caniformia , Otárias , Focas Verdadeiras , Natação , Animais , Membro Anterior
9.
BMC Biol ; 18(1): 86, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32646447

RESUMO

BACKGROUND: Unlike most mammals, toothed whale (Odontoceti) skulls lack symmetry in the nasal and facial (nasofacial) region. This asymmetry is hypothesised to relate to echolocation, which may have evolved in the earliest diverging odontocetes. Early cetaceans (whales, dolphins, and porpoises) such as archaeocetes, namely the protocetids and basilosaurids, have asymmetric rostra, but it is unclear when nasofacial asymmetry evolved during the transition from archaeocetes to modern whales. We used three-dimensional geometric morphometrics and phylogenetic comparative methods to reconstruct the evolution of asymmetry in the skulls of 162 living and extinct cetaceans over 50 million years. RESULTS: In archaeocetes, we found asymmetry is prevalent in the rostrum and also in the squamosal, jugal, and orbit, possibly reflecting preservational deformation. Asymmetry in odontocetes is predominant in the nasofacial region. Mysticetes (baleen whales) show symmetry similar to terrestrial artiodactyls such as bovines. The first significant shift in asymmetry occurred in the stem odontocete family Xenorophidae during the Early Oligocene. Further increases in asymmetry occur in the physeteroids in the Late Oligocene, Squalodelphinidae and Platanistidae in the Late Oligocene/Early Miocene, and in the Monodontidae in the Late Miocene/Early Pliocene. Additional episodes of rapid change in odontocete skull asymmetry were found in the Mid-Late Oligocene, a period of rapid evolution and diversification. No high-probability increases or jumps in asymmetry were found in mysticetes or archaeocetes. Unexpectedly, no increases in asymmetry were recovered within the highly asymmetric ziphiids, which may result from the extreme, asymmetric shape of premaxillary crests in these taxa not being captured by landmarks alone. CONCLUSIONS: Early ancestors of living whales had little cranial asymmetry and likely were not able to echolocate. Archaeocetes display high levels of asymmetry in the rostrum, potentially related to directional hearing, which is lost in early neocetes-the taxon including the most recent common ancestor of living cetaceans. Nasofacial asymmetry becomes a significant feature of Odontoceti skulls in the Early Oligocene, reaching its highest levels in extant taxa. Separate evolutionary regimes are reconstructed for odontocetes living in acoustically complex environments, suggesting that these niches impose strong selective pressure on echolocation ability and thus increased cranial asymmetry.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Baleias/anatomia & histologia , Animais , Beluga/anatomia & histologia , Feminino , Audição , Baleias/classificação
10.
PeerJ ; 8: e8916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322439

RESUMO

In morphological traits, variation within species is generally considered to be lower than variation among species, although this assumption is rarely tested. This is particularly important in fields like palaeontology, where it is common to use a single individual as representative of a species due to the rarity of fossils. Here, we investigated intraspecific variation in the cochleae of harbour porpoises (Phocoena phocoena). Interspecific variation of cochlear morphology is well characterised among odontocetes (toothed whales) because of the importance of the structure in echolocation, but generally these studies use only a single cochlea to represent each species. In this study we compare variation within the cochleae of 18 specimens of P. phocoena with variations in cochlear morphology across 51 other odontocete species. Using both 3D landmark and linear measurement data, we performed Generalised Procrustes and principal component analyses to quantify shape variation. We then quantified intraspecific variation in our sample of P. phocoena by estimating disparity and the coefficient of variation for our 3D and linear data respectively. Finally, to determine whether intraspecific variation may confound the results of studies of interspecific variation, we used multivariate and univariate analyses of variance to test whether variation within the specimens of P. phocoena was significantly lower than that across odontocetes. We found low levels of intraspecific variation in the cochleae of P. phocoena, and that cochlear shape within P. phocoena was significantly less variable than across odontocetes. Although future studies should attempt to use multiple cochleae for every species, our results suggest that using just one cochlea for each species should not strongly influence the conclusions of comparative studies if our results are consistent across Cetacea.

11.
BMC Evol Biol ; 19(1): 195, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651234

RESUMO

BACKGROUND: Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. RESULTS: We identified three convergent regimes: (1) True's (Mesoplodon mirus) and Cuvier's (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall's porpoise (Phocoenoides dalli). Interestingly the 'river dolphins', a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. CONCLUSIONS: The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.


Assuntos
Cóclea/anatomia & histologia , Baleias/anatomia & histologia , Animais , Ecolocação/fisiologia , Filogenia , Análise de Componente Principal
12.
PeerJ ; 7: e7809, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632847

RESUMO

Mesoplodont beaked whales are one of the most enigmatic mammalian genera. We document a pod of four beaked whales in the Bay of Biscay breaching and tail slapping alongside a large passenger ferry. Photographs of the animals were independently reviewed by experts, and identified as True's beaked whales (Mesoplodon mirus). This is the first conclusive live sighting of these animals in the north-east Atlantic, and adds information to previous sightings that are likely to have been M. mirus. Photographs of an adult male appears to show two supernumerary teeth posterior to the apical mandibular tusks. Whilst analysed museum specimens (n = 8) did not show evidence of alveoli in this location, there is evidence of vestigial teeth and variable dentition in many beaked whale species. This is the first such record of supernumerary teeth in True's beaked whales.

13.
PeerJ ; 6: e5025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942692

RESUMO

Neobalaenines are an enigmatic group of baleen whales represented today by a single living species: the pygmy right whale, Caperea marginata, found only in the Southern Hemisphere. Molecular divergence estimates date the origin of pygmy right whales to 22-26 Ma, yet so far there are only three confirmed fossil occurrences. Here, we describe an isolated periotic from the latest Miocene of Victoria (Australia). The new fossil shows all the hallmarks of Caperea, making it the second-oldest described neobalaenine, and the oldest record of the genus. Overall, the new specimen resembles C. marginata in its external morphology and details of the cochlea, but is more archaic in it having a hypertrophied suprameatal area and a greater number of cochlear turns. The presence of Caperea in Australian waters during the Late Miocene matches the distribution of the living species, and supports a southern origin for pygmy right whales.

15.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250183

RESUMO

Extant aquatic mammals are a key component of aquatic ecosystems. Their morphology, ecological role and behaviour are, to a large extent, shaped by their feeding ecology. Nevertheless, the nature of this crucial aspect of their biology is often oversimplified and, consequently, misinterpreted. Here, we introduce a new framework that categorizes the feeding cycle of predatory aquatic mammals into four distinct functional stages (prey capture, manipulation and processing, water removal and swallowing), and details the feeding behaviours that can be employed at each stage. Based on this comprehensive scheme, we propose that the feeding strategies of living aquatic mammals form an evolutionary sequence that recalls the land-to-water transition of their ancestors. Our new conception helps to explain and predict the origin of particular feeding styles, such as baleen-assisted filter feeding in whales and raptorial 'pierce' feeding in pinnipeds, and informs the structure of present and past ecosystems.


Assuntos
Evolução Biológica , Caniformia/fisiologia , Comportamento Alimentar , Baleias/fisiologia , Animais , Ecossistema , Comportamento Predatório
16.
J Morphol ; 278(6): 801-809, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28333389

RESUMO

The pygmy right whale, Caperea marginata, is the least understood extant baleen whale (Cetacea, Mysticeti). Knowledge on its basic anatomy, ecology, and fossil record is limited, even though its singular position outside both balaenids (right whales) and balaenopteroids (rorquals + grey whales) gives Caperea a pivotal role in mysticete evolution. Recent investigations of the cetacean cochlea have provided new insights into sensory capabilities and phylogeny. Here, we extend this advance to Caperea by describing, for the first time, the inner ear of this enigmatic species. The cochlea is large and appears to be sensitive to low-frequency sounds, but its hearing limit is relatively high. The presence of a well-developed tympanal recess links Caperea with cetotheriids and balaenopteroids, rather than balaenids, contrary to the traditional morphological view of a close Caperea-balaenid relationship. Nevertheless, a broader sample of the cetotheriid Herpetocetus demonstrates that the presence of a tympanal recess can be variable at the specific and possibly even the intraspecific level.


Assuntos
Cóclea/anatomia & histologia , Filogenia , Baleias/anatomia & histologia , Animais , Cóclea/diagnóstico por imagem , Fósseis , Tomografia Computadorizada por Raios X
17.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179519

RESUMO

Living baleen whales (mysticetes) produce and hear the lowest-frequency (infrasonic) sounds among mammals. There is currently debate over whether the ancestor of crown cetaceans (Neoceti) was able to detect low frequencies. However, the lack of information on the most archaic fossil mysticetes has prevented us from determining the earliest evolution of their extreme acoustic biology. Here, we report the first anatomical analyses and frequency range estimation of the inner ear in Oligocene (34-23 Ma) fossils of archaic toothed mysticetes from Australia and the USA. The cochlear anatomy of these small fossil mysticetes resembles basilosaurid archaeocetes, but is also similar to that of today's baleen whales, indicating that even the earliest mysticetes detected low-frequency sounds, and lacked ultrasonic hearing and echolocation. This suggests that, in contrast to recent research, the plesiomorphic hearing condition for Neoceti was low frequency, which was retained by toothed mysticetes, and the high-frequency hearing of odontocetes is derived. Therefore, the low-frequency hearing of baleen whales has remained relatively unchanged over the last approximately 34 Myr, being present before the evolution of other signature mysticete traits, including filter feeding, baleen and giant body size.


Assuntos
Evolução Biológica , Tamanho Corporal , Comportamento Alimentar , Audição , Baleias , Animais , Austrália , Fósseis
18.
Biol Lett ; 12(4)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27072406

RESUMO

The evolution of biosonar (production of high-frequency sound and reception of its echo) was a key innovation of toothed whales and dolphins (Odontoceti) that facilitated phylogenetic diversification and rise to ecological predominance. Yet exactly when high-frequency hearing first evolved in odontocete history remains a fundamental question in cetacean biology. Here, we show that archaic odontocetes had a cochlea specialized for sensing high-frequency sound, as exemplified by an Oligocene xenorophid, one of the earliest diverging stem groups. This specialization is not as extreme as that seen in the crown clade. Paired with anatomical correlates for high-frequency signal production in Xenorophidae, this is strong evidence that the most archaic toothed whales possessed a functional biosonar system, and that this signature adaptation of odontocetes was acquired at or soon after their origin.


Assuntos
Cetáceos/fisiologia , Ecolocação , Fósseis , Audição , Animais , Evolução Biológica , Cetáceos/anatomia & histologia , Orelha Interna/fisiologia , Orelha Interna/ultraestrutura , Ondas Ultrassônicas
19.
PLoS One ; 11(4): e0153915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27115739

RESUMO

Australia has a fossil record of penguins reaching back to the Eocene, yet today is inhabited by just one breeding species, the little penguin Eudyptula minor. The description of recently collected penguin fossils from the re-dated upper Miocene Port Campbell Limestone of Portland (Victoria), in addition to reanalysis of previously described material, has allowed the Cenozoic history of penguins in Australia to be placed into a global context for the first time. Australian pre-Quaternary fossil penguins represent stem taxa phylogenetically disparate from each other and E. minor, implying multiple dispersals and extinctions. Late Eocene penguins from Australia are closest to contemporaneous taxa in Antarctica, New Zealand and South America. Given current material, the Miocene Australian fossil penguin fauna is apparently unique in harbouring 'giant penguins' after they went extinct elsewhere; and including stem taxa until at least 6 Ma, by which time crown penguins dominated elsewhere in the southern hemisphere. Separation of Australia from Antarctica during the Palaeogene, and its subsequent drift north, appears to have been a major event in Australian penguin biogeography. Increasing isolation through the Cenozoic may have limited penguin dispersal to Australia from outside the Australasian region, until intensification of the eastwards-flowing Antarctic Circumpolar Current in the mid-Miocene established a potential new dispersal vector to Australia.


Assuntos
Fósseis , Spheniscidae , Animais , Austrália , Filogenia , Spheniscidae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...