Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(46): eadj2832, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976350

RESUMO

Organic aerosol (OA) is an air pollutant ubiquitous in urban atmospheres. Urban OA is usually apportioned into primary OA (POA), mostly emitted by mobile sources, and secondary OA (SOA), which forms in the atmosphere due to oxidation of gas-phase precursors from anthropogenic and biogenic sources. By performing coordinated measurements in the particle phase and the gas phase, we show that the alkylperoxy radical chemistry that is responsible for low-temperature ignition also leads to the formation of oxygenated POA (OxyPOA). OxyPOA is distinct from POA emitted during high-temperature ignition and is chemically similar to SOA. We present evidence for the prevalence of OxyPOA in emissions of a spark-ignition engine and a next-generation advanced compression-ignition engine, highlighting the importance of understanding OxyPOA for predicting urban air pollution patterns in current and future atmospheres.

2.
ChemSusChem ; 16(13): e202300118, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912430

RESUMO

Understanding the oxidative and thermal degradation of CO2 sorbents is essential for assessing long-term sorbent stability in direct air capture (DAC). The potential degradation pathway of imidazolium cyanopyrrolide, an ionic liquid (IL) functionalized for superior CO2 capacity and selectivity, is evaluated under accelerated degradation conditions to elucidate the secondary reactions that can occur during repetitive absorption-desorption thermal-swing cycles. The combined analysis from various spectroscopic, chromatographic, and thermal gravimetric measurements indicated that radical and SN 2 mechanisms in degradation are encouraged by the nucleophilicity of the anion. Thickening of the liquid and gas evolution are accompanied by 50 % reduction in CO2 capacity after a 7-day exposure to O2 under 80 °C. To prevent long exposure to conventional thermal heating, microwave (MW) regeneration of the CO2 -reactive IL is used, where dielectric heating at 80 and 100 °C rapidly desorbs CO2 and regenerates the IL without any measurable degradation.


Assuntos
Dióxido de Carbono , Líquidos Iônicos , Dióxido de Carbono/química , Líquidos Iônicos/química , Micro-Ondas , Oxirredução , Estresse Oxidativo
3.
Am J Respir Crit Care Med ; 202(8): 1115-1124, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822208

RESUMO

Rationale: Aerosol generation with modes of oxygen therapy such as high-flow nasal cannula and noninvasive positive-pressure ventilation is a concern for healthcare workers during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The amount of aerosol generation from the respiratory tract with these various oxygen modalities is unknown.Objectives: To measure the size and number concentration of particles and droplets generated from the respiratory tract of humans exposed to various oxygen delivery modalities.Methods: Ten healthy participants with no active pulmonary disease were enrolled. Oxygen modalities tested included nonhumidified nasal cannula, face mask, heated and humidified high-flow nasal cannula, and noninvasive positive-pressure ventilation. Aerosol generation was measured with each oxygen mode while participants performed maneuvers of normal breathing, talking, deep breathing, and coughing. Testing was conducted in a negative-pressure room. Particles with a diameter between 0.37 and 20 µm were measured using an aerodynamic particle spectrometer.Measurements and Main Results: Median particle concentration ranged from 0.041 to 0.168 particles/cm3. Median diameter ranged from 1.01 to 1.53 µm. Cough significantly increased the number of particles measured. Measured aerosol concentration did not significantly increase with the use of either humidified high-flow nasal cannula or noninvasive positive-pressure ventilation. This was the case during normal breathing, talking, deep breathing, and coughing.Conclusions: Oxygen delivery modalities of humidified high-flow nasal cannula and noninvasive positive-pressure ventilation do not increase aerosol generation from the respiratory tract in healthy human participants with no active pulmonary disease measured in a negative-pressure room.


Assuntos
Aerossóis/administração & dosagem , Betacoronavirus , Infecções por Coronavirus/terapia , Oxigenoterapia/métodos , Pneumonia Viral/terapia , Adulto , COVID-19 , Cânula , Infecções por Coronavirus/epidemiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Ventilação não Invasiva/métodos , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2
4.
Am J Infect Control ; 48(10): 1237-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603849

RESUMO

BACKGROUND: To mitigate potential exposure of healthcare workers (HCWs) to SARS-CoV-2 via aerosol routes, we have developed a portable hood which not only creates a barrier between HCW and patient, but also utilizes negative pressure with filtration of aerosols by a high-efficiency particulate air filter. MATERIAL AND METHODS: The hood has iris-port openings for access to the patient, and an opening large enough for a patient's head and upper torso. The top of the hood is a high-efficiency particulate air filter connected to a blower to apply negative pressure. We determined the aerosol penetration from outside to inside in laboratory experiments. RESULTS: The penetration of particles from within the hood to the breathing zones of HCWs outside the hood was near 10-4 (0.01%) in the 200-400 nm size range, and near 10-3 (0.1%) for smaller particles. Penetration values for particles in the 500 nm-5 µm range were below 10-2 (1%). Fluorometric analysis of deposited fluorescein particles on the personal protective equipment of an HCW revealed that negative pressure reduces particle deposition both outside and inside the hood. CONCLUSIONS: We find that negative pressure hoods can be effective controls to mitigate aerosol exposure to HCWs, while simultaneously allowing access to patients.


Assuntos
Infecções por Coronavirus/prevenção & controle , Filtração/instrumentação , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/prevenção & controle , Infecções Respiratórias/prevenção & controle , Adulto , Betacoronavirus , COVID-19 , Infecções por Coronavirus/transmissão , Desenho de Equipamento , Feminino , Filtração/métodos , Pessoal de Saúde , Humanos , Masculino , Pneumonia Viral/transmissão , Infecções Respiratórias/transmissão , SARS-CoV-2
5.
Phys Chem Chem Phys ; 21(16): 8295-8313, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30946401

RESUMO

The classical picture invoked for heterogeneous nucleation is frequently that of a liquid condensing onto an immiscible solid particle. Here, we examine heterogeneous nucleation of CO2 onto particles comprised of n-pentane or n-hexane under conditions where CO2 should be a solid and the seed particles may be liquid or solid. Although CO2 condensed under all but one of the six conditions investigated, these experiments do not easily fit into the framework of standard heterogeneous nucleation experiments. Rather they explore unconventional regimes of heterogeneous nucleation in which the state of the seed particle may both affect whether deposition can proceed, and, in turn, be influenced by the presence of the condensing species. The work complements the earlier work of Tanimura et al. [RSC Adv., 2015, 5, 105537-105550] that investigated CO2 condensation onto ice nanoparticles, by using seed particles comprised of non-polar compounds that form and freeze under conditions where CO2 is already supersaturated with respect to the solid ice. In some cases, the conditions for seed formation approach the limit of homogeneous CO2 nucleation. Vibrational spectroscopy measurements help pinpoint where CO2 starts to condense. Furthermore, these IR measurements suggest that the n-alkanes never freeze in the presence of CO2, even if the temperatures are well below those required for them to freeze when CO2 is absent. Over the temperature range 65 < T/K < 140, the conditions corresponding to the onset of CO2 heterogeneous nucleation on pre-existing seed particle almost all lie very close to the extrapolated vapor-liquid equilibrium line of CO2 for a broad range of seed materials.

6.
J Nanosci Nanotechnol ; 13(5): 3282-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858844

RESUMO

A comparison was performed between the use of graphene oxide (GO) and reduced graphene oxide (rGO) as a hole extraction layer (HEL) in organic photovoltaic (OPV) cells with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester. Hydrazine hydrate (HYD) and the thermal method (Thermal) were adopted to change the GO to rGO. The GO HEL was deposited on an indium tin oxide electrode by spin coating, followed by the reduction process to form the rGO HELs. The success of the reduction processes was confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, transmittance, and 2-point probe method. The OPV cell with the GO (-3 nm) HEL exhibits an increased power conversion efficiency (PCE) as high as 2.5% under 100 mW/cm2 illumination under air mass conditions, which is higher than that of the OPV cell without HEL, viz. 1.78%. However, the PCE of the OPV cell with rGO HEL is not high as the values of 1.8% for the HYD-rGO and 1.9% for the Thermal-rGO. The ultraviolet photoemission spectroscopy results showed that the work function of GO was 4.7 eV, but those of HYD-rGO and Thermal-rGO were 4.2 eV and 4.5 eV, respectively. Therefore, it is considered that GO is adequate to extract the holes from the active layer, but HYD-rGO and Thermal-rGO are not appropriate to use as HELs in OPV cells from the viewpoint of the energy alignment.


Assuntos
Fontes de Energia Elétrica , Grafite/química , Nanopartículas/química , Compostos Orgânicos/química , Óxidos/química , Energia Solar , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Grafite/efeitos da radiação , Luz , Teste de Materiais , Nanopartículas/efeitos da radiação , Nanopartículas/ultraestrutura , Compostos Orgânicos/efeitos da radiação , Óxidos/efeitos da radiação
7.
J Biomed Mater Res A ; 101(12): 3520-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23613168

RESUMO

Nanoscale topography of artificial substrates can greatly influence the fate of stem cells including adhesion, proliferation, and differentiation. Thus the design and manipulation of nanoscale stem cell culture platforms or scaffolds are of great importance as a strategy in stem cell and tissue engineering applications. In this report, we propose that a graphene oxide (GO) film is an efficient platform for modulating structure and function of human adipose-derived stem cells (hASCs). Using a self-assembly method, we successfully coated GO on glass for fabricating GO films. The hASCs grown on the GO films showed increased adhesion, indicated by a large number of focal adhesions, and higher correlation between the orientations of actin filaments and vinculin bands compared to hASCs grown on the glass (uncoated GO substrate). It was also found that the GO films showed the stronger affinity for hASCs than the glass. In addition, the GO film proved to be a suitable environment for the time-dependent viability of hASCs. The enhanced differentiation of hASCs included osteogenesis, adipogenesis, and epithelial genesis, while chondrogenic differentiation of hASCs was decreased, compared to tissue culture polystyrene as a control substrate. The data obtained here collectively demonstrates that the GO film is an efficient substratum for the adhesion, proliferation, and differentiation of hASCs.


Assuntos
Tecido Adiposo/citologia , Materiais Biocompatíveis/farmacologia , Grafite/farmacologia , Óxidos/farmacologia , Células-Tronco/citologia , Adulto , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Microscopia de Força Atômica , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...