Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Front Cell Dev Biol ; 12: 1368021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596358

RESUMO

Introduction: The classically defined two retinal microglia layers are distributed in inner and outer plexiform layers. Although there are some reports that retinal microglia are also superficially located around the ganglion cell layer (GCL) in contact with the vitreous, there has been a lack of detailed descriptions and not fully understood yet. Methods: We visualized the microglial layers by using CX3CR1-GFP (C57BL6) transgenic mice with both healthy and disease conditions including NaIO3-induced retinal degeneration models and IRBP-induced auto-immune uveitis models. Result: We found the GCL microglia has two subsets; peripheral (pph) microglia located on the retinal parenchyma and BAM (CNS Border Associated Macrophage) which have a special stretched phenotype only located on the surface of large retinal veins. First, in the pph microglia subset, but not in BAM, Galectin-3 and LYVE1 are focally expressed. However, LYVE1 is specifically expressed in the amoeboid or transition forms, except the typical dendritic morphology in the pph microglia. Second, BAM is tightly attached to the surface of the retinal veins and has similar morphology patterns in both the healthy and disease conditions. CD86+ BAM has a longer process which vertically passes the proximal retinal veins. Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL. Discussion: Our data helps decipher the basic anatomy and pathophysiology of the retinal microglia in the GCL.

2.
Vaccines (Basel) ; 12(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400173

RESUMO

All pigs in the Republic of Korea are given the foot-and-mouth disease virus (FMDV) vaccine intramuscularly (IM) as part of the country's vaccination policy. However, the IM administration of the FMDV vaccine to pig results in residual vaccine components in the muscle and undesirable changes in muscle and soft tissues, causing economic losses in swine production. In this study, we evaluated whether intradermal (ID) vaccination could be proposed as an alternative to IM administration. ID vaccination (0.2 mL on each side of the neck muscle) and IM vaccination (2 mL on each side of the neck muscle) were performed twice, separated by 14 days, using a commercial FMD vaccine in specific-pathogen-free pigs. We observed growth performance, gross and microscopic lesions at the inoculation site, FMDV-specific antibodies, and neutralizing antibodies for 35 days after vaccination. Side effects on the skin grossly appeared following ID administration, but most were reduced within two weeks. All ID-vaccinated pigs showed inflammatory lesions limited to the dermis, but IM-vaccinated pigs had abnormal undesirable changes and pus in the muscle. ID-vaccinated pigs performed comparably to IM-vaccinated pigs in terms of growth, FMD virus-specific antibodies, protection capability against FMDV, and T-cell induction. This study demonstrated that the ID inoculation of the inactivated FMD vaccine induced immune responses comparable to an IM injection at 1/10 of the inoculation dose and that the inoculation lesion was limited to the dermis, effectively protecting against the formation of abnormal undesirable changes in muscle and soft tissues.

3.
J Neurosurg Case Lessons ; 7(4)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252934

RESUMO

BACKGROUND: Intracranial chondroma is an extremely rare type of tumor composed of mature hyaline cartilaginous tissues. No previous cases of skull base periosteal chondroma have been presented. OBSERVATIONS: A 31-year-old male had progressive memory loss and diminished motivation for the previous 1.5 years. Magnetic resonance imaging revealed a giant tumor with partial calcification arising from the upper clivus and extending to the prepontine cistern. Compression of the brainstem and hypothalamus was significant. Surgery was performed and intentionally limited to an intracapsular resection with endoscopic endonasal surgery (EES), and the brainstem and hypothalamus were successfully decompressed. Pathological examination findings showed a composition of hyaline cartilage with chondrocyte clusters. Genetic testing with next-generation sequencing indicated alternations in IDH1 R132C, KDR Q472H, IDH2 I142L, and TP53 P72R. On the basis of these findings, a diagnosis of periosteal chondroma was made. Postoperatively, complete relief from all symptoms was noted, and MRI one year later showed no evidence of tumor regrowth. LESSONS: This is the first known report of skull base periosteal chondroma. Genetic testing was useful for confirming the diagnosis, and EES was effective for treatment. Should such a tumor show adhesion to an important structure, an intracapsular excision can be beneficial for avoiding complications.

4.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762231

RESUMO

A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Glucose/metabolismo
5.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762541

RESUMO

Microglial cells are the key regulators of inflammation during retinal degeneration (RD) and are conventionally classified as M1 or M2. However, whether the M1/M2 classification exactly reflects the functional classification of microglial cells in the retina remains debatable. We examined the spatiotemporal changes of microglial cells in the blue-LED and NaIO3-induced RD mice models using M1/M2 markers and functional genes. TUNEL assay was performed to detect photoreceptor cell death, and microglial cells were labeled with anti-IBA1, P2RY12, CD86, and CD206 antibodies. FACS was used to isolate microglial cells with anti-CD206 and CD86 antibodies, and qRT-PCR was performed to evaluate Il-10, Il-6, Trem-2, Apoe, and Lyz2 expression. TUNEL-positive cells were detected in the outer nuclear layer (ONL) from 24 h to 72 h post-RD induction. At 24 h, P2RY12 was decreased and CD86 was increased, and CD86/CD206 double-labeled cells occupied the dominant population at 72 h. And CD86/CD206 double-labeled cells showed a significant increase in Apoe, Trem2, and Lyz2 levels but not in those of Il-6 and Il-10. Our results demonstrate that microglial cells in active RD cannot be classified as M1 or M2, and the majority of microglia express both CD86 and CD206, which are involved in phagocytosis rather than inflammation.


Assuntos
Microglia , Degeneração Retiniana , Camundongos , Animais , Microglia/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Animais de Doenças , Fagocitose/genética , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
J Pharmacol Sci ; 151(2): 63-71, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36707180

RESUMO

Mirtazapine, an atypical antidepressant, is known to enhance serotonergic transmission by inhibiting the 5-hydroxytryptamine (5-HT)1A, 5-HT2C, and 5-HT3 receptors. However, the mechanism of action on the 5-HT3 receptor remains unclear. We investigated the inhibitory mechanisms of mirtazapine on 5-HT3 receptors of NCB20 neuroblastoma cells using the whole-cell voltage-clamp method. Mirtazapine inhibited the 5-HT3 receptor currents in a concentration-dependent manner, and the inhibitory effect was influenced by the concentration of 5-HT. When mirtazapine was co-applied to 5-HT, the maximal response of the 5-HT3 receptor current was reduced and EC50 was increased, suggesting that mirtazapine might act as a non-competitive inhibitor. Inhibition of 5-HT3 current by mirtazapine was stronger in pre-application than in co-application, which suggests that mirtazapine might act as a closed state inhibitor. This finding was further supported by no use-dependency of the mirtazapine for 5-HT3 receptor inhibition. Finally, mirtazapine accelerated the desensitization and deactivation process in a concentration-dependent manner. The difference in recovery time showed that mirtazapine drastically influences the desensitization process than the deactivation process. These mechanistic characteristics of mirtazapine support the understanding of the relationship between the 5-HT3 receptor and atypical antidepressants.


Assuntos
Antidepressivos de Segunda Geração , Serotonina , Antidepressivos/farmacologia , Linhagem Celular Tumoral , Mirtazapina , Receptores 5-HT3 de Serotonina , Serotonina/farmacologia , Animais , Cricetinae , Cricetulus
7.
Prog Neurobiol ; 219: 102369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330924

RESUMO

Sensing smells of foods, prey, or predators determines animal survival. Olfactory sensory neurons in the olfactory epithelium (OE) detect odorants, where cAMP and Ca2+ play a significant role in transducing odorant inputs to electrical activity. Here we show Anoctamin 9, a cation channel activated by cAMP/PKA pathway, is expressed in the OE and amplifies olfactory signals. Ano9-deficient mice had reduced olfactory behavioral sensitivity, electro-olfactogram signals, and neural activity in the olfactory bulb. In line with the difference in olfaction between birds and other vertebrates, chick ANO9 failed to respond to odorants, whereas chick CNGA2, a major transduction channel, showed greater responses to cAMP. Thus, we concluded that the signal amplification by ANO9 is important for mammalian olfactory transduction.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Camundongos , Anoctaminas/metabolismo , Mamíferos/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia
8.
Hellenic J Cardiol ; 66: 52-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35649476

RESUMO

BACKGROUND: Stem cell therapy has emerged as a novel treatment for heart failure after myocardial infarction (Ml). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are commonly considered because of their accessibility and usability. However, their therapeutic potential remains controversial. In our previous in vitro study, chorion-derived mesenchymal stem cells (C-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) demonstrated an ability to differentiate into cardiomyocytes and neural cells, respectively. Thus, we examined whether C-MSCs had a better differentiation potential in an MI animal model. METHODS: MI was induced by ligation of the left anterior descending artery, and DiI-labeled MSCs were injected into the border of the infarcted myocardium. The left ventricular ejection fraction (LVEF) and fractional shortening (FS) were measured using echocardiograms. Masson's Trichrome staining was performed to evaluate the viable myocardium. Alpha-sarcomeric actin (α-SA), cardiac troponin-T (cTnT), and isolectin were immunolabeled to evaluate differentiation and capillary formation. RESULTS: After 8 weeks, the LVEF and FS significantly increased to a greater extent in the C-MSC-injected group with maintenance of viable myocardium, as compared to in the control, UC-MSC-, and BM-MSC-injected groups (p < 0.05). Compared to UC-MSCs and BM-MSCs, C-MSCs significantly increased the capillary density (p < 0.05) and demonstrated higher expressions of cTnT and α-SA. CONCLUSIONS: In conclusion, compared to UC-MSCs and BM-MSCs, C-MSCs showed a better therapeutic efficacy in a rat MI model.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Córion/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Ratos , Volume Sistólico , Troponina T/metabolismo , Função Ventricular Esquerda
9.
Cells ; 10(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440741

RESUMO

Retinal detachment (RD) is a sight-threatening condition, leading to photoreceptor cell death; however, only a few studies provide insight into its effects on the entire retinal region. We examined the spatiotemporal changes in glial responses in a mouse RD model. In electroretinography, a- and b-waves were reduced in a time-dependent manner. Hematoxylin and eosin staining revealed a gradual decrease in the outer nuclear layer throughout the retinal region. Terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay showed that TUNEL-positive photoreceptors increased 5 days after RD and decreased by 14 days. Glial response was evaluated by immunohistochemistry using antibodies against glial fibrillary acidic protein (GFAP, Müller glial marker) and Iba-1 (microglial marker) and osteopontin (OPN, activated microglial marker). GFAP immunoreactivity increased after 7 days in complete RD, and was retained for 14 days. OPN expression increased in microglial cells 3-7 days after RD, and decreased by 14 days in the detached and border regions. Although OPN was not expressed in the intact region, morphologically activated microglial cells were observed. These retinal glial cell responses and photoreceptor degeneration in the border and intact regions suggest that the effects of RD in the border and intact retinal regions need to be understood further.


Assuntos
Células Ependimogliais/metabolismo , Microglia/metabolismo , Descolamento Retiniano/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/citologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Osteopontina/metabolismo , Retina/metabolismo , Retina/patologia , Descolamento Retiniano/metabolismo , Regulação para Cima
10.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202223

RESUMO

Age-related macular degeneration (AMD) is a complex multifactorial disease characterized in its late form by neovascularization (wet type) or geographic atrophy of the retinal pigment epithelium cell layer (dry type). The complement system is an intrinsic component of innate immunity. There has been growing evidence that the complement system plays an integral role in maintaining immune surveillance and homeostasis in AMD. Based on the association between the genotypes of complement variants and AMD occurrence and the presence of complement in drusen from AMD patients, the complement system has become a therapeutic target for AMD. However, the mechanism of complement disease propagation in AMD has not been fully understood. This concise review focuses on an overall understanding of the role of the complement system in AMD and its ongoing clinical trials. It provides further insights into a strategy for the treatment of AMD targeting the complement system.


Assuntos
Proteínas do Sistema Complemento/imunologia , Degeneração Macular/etiologia , Ensaios Clínicos como Assunto , Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Diagnóstico por Imagem , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/metabolismo , Degeneração Macular/terapia , Terapia de Alvo Molecular , Fatores de Risco , Resultado do Tratamento
11.
Animals (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203473

RESUMO

The Jeju horse is a native Korean species that has been breeding on Jeju Island since the 13th century. Their shape has a distinct appearance from the representative species, Thoroughbred. Here, we performed a comparison of the Jeju horse and Thoroughbred horse for the identification of genome-wide structure variation by using the next-generation sequencing (NGS) technique. We generated an average of 95.59 Gb of the DNA sequence, resulting in an average of 33.74 X sequence coverage from five Jeju horses. In addition, reads obtained from WGRS data almost covered the horse reference genome (mapped reads 98.4%). Based on our results, we identified 1,244,064 single nucleotide polymorphisms (SNPs), 113,498 genomic insertions, and 114,751 deletions through bioinformatics analysis. Interestingly, the results of the WGRS comparison indicated that the eqCD1a6 gene contains signatures of positive natural selection in Jeju horses. The eqCD1a6 gene is known to be involved in immunity. The eqCD1a6 gene of Jeju horses commonly contained 296 variants (275 SNPs and 21 INDELs) that were compared with its counterpart of two Thoroughbred horses. In addition, we used LOAA, digital PCR, to confirm the possibility of developing a molecular marker for species identification using variant sites. As a result, it was possible to confirm the result of the molecular marker with high accuracy. Nevertheless, eqCD1a6 was shown to be functionally intact. Taken together, we have found significant genomic variation in these two different horse species.

12.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922686

RESUMO

Retinal degeneration is a leading cause of blindness. The unfolded protein response (UPR) is an endoplasmic reticulum (ER) stress response that affects cell survival and death and GRP78 forms a representative protective response. We aimed to determine the exact localization of GRP78 in an animal model of light-induced retinal degeneration. Dark-adapted mice were exposed to blue light-emitting diodes and retinas were obtained at 24 h and 72 h after exposure. In the normal retina, we found that GRP78 was rarely detected in the photoreceptor cells while it was expressed in the perinuclear space of the cell bodies in the inner nuclear and ganglion cell layers. After injury, the expression of GRP78 in the outer nuclear and inner plexiform layers increased in a time-dependent manner. However, an increased GRP78 expression was not observed in damaged photoreceptor cells in the outer nuclear layer. GRP78 was located in the perinuclear space and ER lumen of glial cells and the ER developed in glial cells during retinal degeneration. These findings suggest that GRP78 and the ER response are important for glial cell activation in the retina during photoreceptor degeneration.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Luz/efeitos adversos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia
13.
Vet Res ; 51(1): 131, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059768

RESUMO

Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent of strangles. Hence the objective of this study was to calculate an optimal dosage of cefquinome against S. equi based on pharmacokinetics and pharmacodynamics integration. Cefquinome (1.0 mg/kg) was administered by intravenous and intramuscular routes to six healthy thoroughbred foals. Serum cefquinome concentrations were determined by high-performance liquid chromatography. The in vitro and ex vivo antibacterial activity were determined from minimum inhibitory concentrations (MIC) and bacterial killing curves. The optimal dosage was calculated from the integration of pharmacokinetic parameters and area under the curve (AUC24h/MIC) values. Total body clearance and volume of distribution of cefquinome after intravenous administration were 0.06 L/h/kg and 0.09 L/kg, respectively. Following intramuscular administration, a maximum concentration of 0.73 µg/mL at 1.52 h (Tmax) and a systemic bioavailability of 37.45% were observed. The MIC of cefquinome against S. equi was 0.016 µg/mL. The ex vivo AUC24h/MIC values representing bacteriostatic, and bactericidal activity were 113.11, and 143.14 h, respectively. Whereas the %T > MIC for bactericidal activity was 153.34%. In conclusion, based on AUC24h/MIC values and pharmacokinetic parameters, cefquinome when administered by intramuscularly at a dosage of 0.53 mg/kg every 24 h, would be effective against infection caused by S. equi in foals. Further studies may be necessary to confirm its therapeutic efficacy in a clinical environment.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Doenças dos Cavalos/tratamento farmacológico , Infecções Estreptocócicas/veterinária , Streptococcus/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Cefalosporinas/farmacocinética , Cavalos , Injeções Intramusculares/veterinária , Testes de Sensibilidade Microbiana/veterinária , Infecções Estreptocócicas/tratamento farmacológico
14.
BMC Microbiol ; 20(1): 212, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680572

RESUMO

BACKGROUND: DNA extraction is an important factor influencing the microbiome profile in fecal samples. Considering that the QIAamp DNA Stool Mini Kit, one of the most commonly used DNA extraction kits, is no longer manufactured, this study aimed to investigate whether a new commercially available kit, the QIAamp PowerFecal Pro DNA Kit, yields comparable microbiome profiles with those previously obtained using the QIAamp DNA Stool Mini Kit. RESULTS: We extracted DNA from fecal samples of 10 individuals using three protocols (protocol P of the QIAamp PowerFecal Pro DNA Kit, and protocols SB and S of the QIAamp DNA Stool Mini Kit with and without an additional bead-beating step, respectively) in triplicate. Ninety extracted DNA samples were subjected to 16S rRNA gene sequencing. DNA quality measured by 260/280 absorbance ratios was found to be optimal in protocol P. Additionally, the DNA quantity and microbiome diversity obtained using protocol P were significantly higher than those of protocol S, however, did not differ significantly from those of protocol SB. Based on the overall microbiome profiles, variations between protocol P and protocol SB or S were significantly less than between-individual variations. Furthermore, most genera were not differentially abundant in protocol P compared to the other protocols, and the number of differentially abundant genera, as well as the degree of fold-changes were smaller between protocols P and SB than between protocols P and S. CONCLUSIONS: The QIAamp PowerFecal Pro DNA Kit exhibited microbiome analysis results that were comparable with those of the QIAamp DNA Stool Mini Kit with a bead-beating step. These results will prove useful for researchers investigating the gut microbiome in selecting an alternative protocol to the widely used but discontinued kit.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/análise , DNA Ribossômico/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal , Humanos , Filogenia , RNA Ribossômico 16S/análise , Kit de Reagentes para Diagnóstico
15.
Bioresour Technol ; 305: 123155, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32178996

RESUMO

Due to climate change, recent research interests have increased towards CO2 utilization as a strategy to mitigate the atmospheric CO2 level. Herein, we aimed to explore formate dehydrogenases (FDHs) from chemoautotroph to discover an efficient and O2-tolerant biocatalyst for catalyzing the CO2 reduction to a versatile formate. Through genome-mining and phylogenetic analysis, the FDH from Rhodobacter aestuarii (RaFDH) was newly discovered as a promising O2-tolernat CO2 reductase and was successfully expressed in Escherichia coli. In this study, the optimum conditions and turnover rates of RaFDH were examined for CO2 reduction and formate oxidation. In particular, the RaFDH-driven CO2 reduction far surpassed the formate oxidation with a turnover rate of 48.3 and 15.6 min-1, respectively. The outstanding superiority of RaFDH towards CO2 reduction can be applicable for constructing a feasible electroenzymatic system that produce a versatile formate from CO2 as a cheap, abundant, and renewable resource.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Formiatos , Oxirredução , Filogenia , Rhodobacter
16.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110998

RESUMO

TMEM16A/anoctamin1 (ANO1), a calcium (Ca2+)-activated chloride (Cl-) channel, has many functions in various excitable cells and modulates excitability in both Ca2+- and voltage-gating modes. However, its gating characteristics and role in primary neural cells remain unclear. Here, we characterized its Ca2+- and voltage-dependent components in rod bipolar cells using dissociated and slice preparations of the mouse retina. The I-V curves of Ca2+-dependent ANO1 tail current and voltage-gated Ca2+ channel (VGCC) are similar; as ANO1 is blocked by VGCC inhibitors, ANO1 may be gated by Ca2+ influx through VGCC. The voltage-dependent component of ANO1 has outward rectifying and sustained characteristics and is clearly isolated by the inhibitory effect of Cl- reduction and T16Ainh-A01, a selective ANO1 inhibitor, in high EGTA, a Ca2+ chelator. The voltage-dependent component disappears due to VGCC inhibition, suggesting that Ca2+ is the essential trigger for ANO1. In perforated current-clamping method, the application of T16Ainh-A01 and reduction of Cl- extended excitation periods in rod bipolar cells, revealing that ANO1 induces repolarization during excitation. Overall, ANO1 opens by VGCC activation during physiological excitation of the rod bipolar cell and has a voltage-dependent component. These two gating-modes concurrently provide the intrinsic characteristics of the membrane potential in rod bipolar cells.


Assuntos
Anoctamina-1/metabolismo , Cálcio/metabolismo , Eletricidade , Ativação do Canal Iônico , Células Bipolares da Retina/metabolismo , Animais , Canais de Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos
17.
Appl Microsc ; 50(1): 11, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580384

RESUMO

The human turbinate-derived mesenchymal stem cells (hTMSCs), which were DiI-labeled and transplanted into the subretinal space in degenerating mouse retina, were observed in retinal vertical sections processed for rhodopsin (a marker for rod photoreceptor) by confocal microscope with differential interference contrast (DIC) filters. The images clearly demonstrated that DiI-labeled hTMSCs have rhodopsin-immunoreactive appendages, indicating differentiation of transplanted hTMSC into rod photoreceptor. Conclusively, the finding suggests therapeutic potential of hTMSCs in retinal degeneration.

18.
Korean J Physiol Pharmacol ; 23(6): 509-517, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31680773

RESUMO

Escitalopram is one of selective serotonin reuptake inhibitor antidepressants. As an S-enantiomer of citalopram, it shows better therapeutic outcome in depression and anxiety disorder treatment because it has higher selectivity for serotonin reuptake transporter than citalopram. The objective of this study was to determine the direct inhibitory effect of escitalopram on 5-hydroxytryptamine type 3 (5-HT3) receptor currents and study its blocking mechanism to explore additional pharmacological effects of escitalopram through 5-HT3 receptors. Using a whole-cell voltage clamp method, we recorded currents of 5-HT3 receptors when 5-HT was applied alone or co-applied with escitalopram in cultured NCB-20 neuroblastoma cells known to express 5-HT3 receptors. 5-HT induced currents were inhibited by escitalopram in a concentration-dependent manner. EC50 of 5-HT on 5-HT3 receptor currents was increased by escitalopram while the maximal peak amplitude was reduced by escitalopram. The inhibitory effect of escitalopram was voltage independent. Escitalopram worked more effectively when it was co-applied with 5-HT than pre-application of escitalopram. Moreover, escitalopram showed fast association and dissociation to the open state of 5-HT3 receptor channel with accelerating receptor desensitization. Although escitalopram accelerated 5-HT3 receptor desensitization, it did not change the time course of desensitization recovery. These results suggest that escitalopram can inhibit 5-HT3 receptor currents in a non-competitive manner with the mechanism of open channel blocking.

19.
Korean J Physiol Pharmacol ; 23(5): 419-426, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31496879

RESUMO

Mosapride accelerates gastric emptying by acting on 5-hydroxytryptamine type 4 (5-HT4) receptor and is frequently used in the treatment of gastrointestinal (GI) disorders requiring gastroprokinetic efficacy. We tested the effect of mosapride on 5-hydroxytryptamine type 3 (5-HT3) receptor currents because the 5-HT3 receptors are also known to be expressed in the GI system and have an important role in the regulation of GI functions. Using the whole-cell voltage clamp method, we compared the currents of the 5-HT3 receptors when 5-HT was applied alone or was co-applied with mosapride in cultured NCB-20 cells known to express 5-HT3 receptors. The 5-HT3 receptor current amplitudes were inhibited by mosapride in a concentration-dependent manner. Mosapride blocked the peak currents evoked by the application of 5-HT in a competitive manner because the EC50 shifted to the right without changing the maximal effect. The rise slopes of 5-HT3 receptor currents were decreased by mosapride. Pre-application of mosapride before co-application, augmented the inhibitory effect of mosapride, which suggests a closed channel blocking mechanism. Mosapride also blocked the opened 5-HT3 receptor because it inhibited the 5-HT3 receptor current in the middle of the application of 5-HT. It accelerated desensitization of the 5-HT3 receptor but did not change the recovery process from the receptor desensitization. There were no voltage-, or use-dependency in its blocking effects. These results suggest that mosapride inhibited the 5-HT3 receptor through a competitive blocking mechanism probably by binding to the receptor in closed state, which could be involved in the pharmacological effects of mosapride to treat GI disorders.

20.
Front Cell Neurosci ; 13: 319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379505

RESUMO

Glycyrrhizic acid (GA) is a major component in the root and rhizomes of licorice (Glycyrrhiza glabra), which have been used as an herbal medicine, because of its anti-inflammatory activity. GA is known as an inhibitor of high-mobility group box 1 (HMGB1), which is involved in the pathogenesis of various inflammatory diseases including inner retinal neuropathy. In this study, we examined the effect of GA in a mouse model of retinal degeneration (RD), the leading cause of blindness. RD was induced by exposure to a blue light-emitting diode (LED). In functional assessment, electroretinography showed that the amplitudes of both a- and b-waves were reduced in RD mice, whereas they were significantly increased in GA-treated RD mice (P < 0.05), compared to those in non-treated RD animals. In histological assessment, GA treatment preserved the outer nuclear layer where photoreceptors reside and reduced photoreceptor cell death. GA-treated retinas showed significantly reduced expression of proinflammatory cytokines such as TNF-α, IL-6, IL-1ß, CCL2 and 6, iNOS, and COX-2 (P < 0.05), compared to that in non-treated retinas. Immunohistochemistry showed that Iba-1 and GFAP expression was markedly reduced in GA-treated retinas, indicating decreased glial response and inflammation. Interestingly, HMGB1 expression was reduced in non-treated RD retinas whereas GA paradoxically increased its expression. These results demonstrate that GA preserves retinal structure and function by inhibiting inflammation in blue LED-induced RD, suggesting a potential application of GA as a medication for RD. In addition, we propose a potential retinal protective function of HMGB1 in the pathogenesis of RD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...