Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Ann Glob Health ; 89(1): 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969097

RESUMO

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbonmetric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.


Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Retardadores de Chama , Gases de Efeito Estufa , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Estados Unidos , Criança , Animais , Humanos , Masculino , Feminino , Pré-Escolar , Plásticos/toxicidade , Plásticos/química , Ecossistema , Mônaco , Microplásticos , Poluentes Orgânicos Persistentes , Disruptores Endócrinos/toxicidade , Carvão Mineral
5.
Lancet Planet Health ; 5(10): e681-e688, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627472

RESUMO

BACKGROUND: Africa is undergoing both an environmental and an epidemiological transition. Household air pollution is the predominant form of air pollution, but it is declining, whereas ambient air pollution is increasing. We aimed to quantify how air pollution is affecting health, human capital, and the economy across Africa, with a particular focus on Ethiopia, Ghana, and Rwanda. METHODS: Data on household and ambient air pollution were from WHO Global Health Observatory, and data on morbidity and mortality were from the 2019 Global Burden of Disease Study. We estimated economic output lost due to air pollution-related disease by country, with use of labour income per worker, adjusted by the probability that a person (of a given age) was working. Losses were expressed in 2019 international dollars and as a proportion of gross domestic product (GDP). We also quantified the contribution of particulate matter (PM)2·5 pollution to intelligence quotient (IQ) loss in children younger than 10 years, with use of an exposure-response coefficient based on previously published data. FINDINGS: Air pollution was responsible for 1·1 million deaths across Africa in 2019. Household air pollution accounted for 697 000 deaths and ambient air pollution for 394 000. Ambient air pollution-related deaths increased from 361 000 in 2015, to 383 000 in 2019, with the greatest increases in the most highly developed countries. The majority of deaths due to ambient air pollution are caused by non-communicable diseases. The loss in economic output in 2019 due to air pollution-related morbidity and mortality was $3·02 billion in Ethiopia (1·16% of GDP), $1·63 billion in Ghana (0·95% of GDP), and $349 million in Rwanda (1·19% of GDP). PM2·5 pollution was estimated to be responsible for 1·96 billion lost IQ points in African children in 2019. INTERPRETATION: Ambient air pollution is increasing across Africa. In the absence of deliberate intervention, it will increase morbidity and mortality, diminish economic productivity, impair human capital formation, and undercut development. Because most African countries are still early in development, they have opportunities to transition rapidly to wind and solar energy, avoiding a reliance on fossil fuel-based economies and minimising pollution. FUNDING: UN Environment Programme.


Assuntos
Poluição do Ar , Poluição do Ar/estatística & dados numéricos , Criança , Etiópia/epidemiologia , Carga Global da Doença , Humanos , Renda , Material Particulado/análise , Material Particulado/toxicidade
6.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495332

RESUMO

We examine the health implications of electricity generation from the 2018 stock of coal-fired power plants in India, as well as the health impacts of the expansion in coal-fired generation capacity expected to occur by 2030. We estimate emissions of SO2, NOX, and particulate matter 2.5 µm (PM2.5) for each plant and use a chemical transport model to estimate the impact of power plant emissions on ambient PM2.5 Concentration-response functions from the 2019 Global Burden of Disease (GBD) are used to project the impacts of changes in PM2.5 on mortality. Current plus planned plants will contribute, on average, 13% of ambient PM2.5 in India. This reflects large absolute contributions to PM2.5 in central India and parts of the Indo-Gangetic plain (up to 20 µg/m3). In the south of India, coal-fired power plants account for 20-25% of ambient PM2.5 We estimate 112,000 deaths are attributable annually to current plus planned coal-fired power plants. Not building planned plants would avoid at least 844,000 premature deaths over the life of these plants. Imposing a tax on electricity that reflects these local health benefits would incentivize the adoption of renewable energy.


Assuntos
Carvão Mineral , Centrais Elétricas , Geografia , Índia/epidemiologia , Mortalidade , Material Particulado/análise
7.
J Hazard Mater ; 382: 121094, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472468

RESUMO

This study evaluated the correlation between the amount of mercury (Hg) compounds in waste phosphor powder from spent UV curing lamps and their leaching characteristics. The appropriate thermal treatment conditions and Hg content in the residue necessary to satisfy the leaching criteria for classification as non-hazardous waste were identified. The decomposition of Hg compounds by thermal treatment was also evaluated by comparing sequential extraction results based on thermal stability and leaching potential of Hg compounds. Before the thermal treatment, the Hg content in waste phosphor powder and concentration in the leaching extract were 108.7 mg-Hg/kg and 0.56 mg-Hg/L, respectively. Hg compounds with low thermal stability were removed rapidly during the initial stage of thermal treatment at temperatures between 400 °C and 600 °C. After thermal treatment, Hg in the form of an intermetallic compound, such as Sr-Hg, was expected to be remained mainly, and the Hg content was reduced to 13 mg-Hg/kg in the waste phosphor powder, at that point the residue satisfied the leaching standard limit (5 µg-Hg/L) for non-hazardous waste stipulated in the legislation of Republic of Korea.

8.
J Exp Bot ; 66(20): 6297-310, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163696

RESUMO

Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis.


Assuntos
Arabidopsis/fisiologia , Proteínas de Ligação ao GTP/genética , Nicotiana/fisiologia , Biogênese de Organelas , Ribossomos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética
9.
Nano Lett ; 13(9): 4190-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23924512

RESUMO

Designing a highly efficient catalyst is essential to improve the electrochemical performance of Li-O2 batteries for long-term cycling. Furthermore, these batteries often show significant capacity fading due to the irreversible reaction characteristics of the Li2O2 product. To overcome these limitations, we propose a bifunctional composite catalyst composed of electrospun one-dimensional (1D) Co3O4 nanofibers (NFs) immobilized on both sides of the 2D nonoxidized graphene nanoflakes (GNFs) for an oxygen electrode in Li-O2 batteries. Highly conductive GNFs with noncovalent functionalization can facilitate a homogeneous dispersion in solution, thereby enabling simple and uniform attachment of 1D Co3O4 NFs on GNFs without restacking. High first discharge capacity of 10 500 mAh/g and superior cyclability for 80 cycles with a limited capacity of 1000 mAh/g were achieved by (i) improved catalytic activity of 1D Co3O4 NFs with large surface area, (ii) facile electron transport via interconnected GNFs functionalized by Co3O4 NFs, and (iii) fast O2 diffusion through the ultrathin GNF layer and porous Co3O4 NF networks.

10.
Planta ; 233(6): 1073-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21290146

RESUMO

In the present study, we investigated protein characteristics and physiological functions of PRBP (plastid RNA-binding protein) in Nicotiana benthamiana. PRBP fused to green fluorescent protein (GFP) localized to the chloroplasts. Recombinant PRBP proteins bind to single-stranded RNA in vitro, but not to DNA in a double- or a single-stranded form. Virus-induced gene silencing (VIGS) of PRBP resulted in leaf yellowing in N. benthamiana. At the cellular level, PRBP depletion disrupted chloroplast biogenesis: chloroplast number and size were reduced, and the thylakoid membrane was poorly developed. In PRBP-silenced leaves, protein levels of plastid-encoded genes were significantly reduced, whereas their mRNA levels were normal regardless of their promoter types indicating that PRBP deficiency primarily affects translational or post-translational processes. Depletion of PRBP impaired processing of the plastid-encoded 4.5S ribosomal RNA, resulting in accumulation of the larger precursor rRNAs in the chloroplasts. In addition, PRBP-deficient chloroplasts contained significantly reduced levels of mature 4.5S and 5S rRNAs in the polysomal fractions, indicating decreased chloroplast translation. These results suggest that PRBP plays a role in chloroplast rRNA processing and chloroplast development in higher plants.


Assuntos
Cloroplastos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , RNA Ribossômico/metabolismo , Cloroplastos/genética , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Fluorescência Verde/análise , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Plastídeos/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Tilacoides/fisiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA