Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(48): 19582-19592, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37980598

RESUMO

Piano-stool iridium hydride complexes bearing phenylpyridine ligands are effective precatalysts for promoting the formation of element-hydrogen bonds using H2 as the stoichiometric H-atom source. Irradiation with blue light resulted in a profound enhancement of catalyst turnover for the iridium-catalyzed hydrogenation of the aryloxyl radical 2,4,6-tBu3-C6H2O• to the corresponding phenol. Monitoring the progress of the reaction revealed the formation of an iridium 3,3-dimethyl-2,3-dihydrobenzofuranyl compound arising from two C-H activation events following the proton-coupled electron transfer (PCET) step. Under thermal conditions, this compound was inactive for catalytic aryloxide hydrogenation, representing a deactivation pathway. Irradiation with blue light under H2 released the free heterocycle and regenerated the piano-stool iridium hydride precatalyst, establishing a pathway for catalyst recovery and overall enhanced turnover.

2.
Nanoscale ; 15(9): 4604-4611, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763344

RESUMO

The development of multifunctional nanoparticles (NPs) combining individual properties, such as magnetic, luminescence, and optical properties, has attracted significant research interest. In this study, europium (Eu)-incorporating iron oxide nanoparticles (IONPs) with Eu(TTA)3phen (ET-SIOPs) were successfully designed and shown to have luminescence and magnetic properties. The proposed synthetic method has three steps: (1) IONP synthesis, (2) SiO2 layer coating (1st coating), and (3) Eu-SiO2 layer coating (2nd coating). The morphology of the ET-SIOPs was well preserved after the 2nd coating was conducted. According to the photoluminescence (PL) spectra in the range of 500 to 700 nm, the Eu-incorporating SIOPs with Eu(TTA)3phen (ET-SIOPs) exhibited the highest emission intensity compared to the Eu-incorporating SIOPs synthesized with other Eu precursors. Furthermore, the ET-SIOPs exhibited long-term luminescence stability of 6 months. In addition, this method of double-layer coating can be applied to other materials synthesized with different compositions and shapes, such as MnO and SiO2 NPs. The findings of this study will not only provide new insights for the synthesis of luminescent-magnetic NPs with long-term luminescence stability and paramagnetic properties, but can also be applied for the design of various multifunctional NPs.

3.
Angew Chem Int Ed Engl ; 62(13): e202218794, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36718077

RESUMO

Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the ß-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.

4.
J Phys Chem Lett ; 14(5): 1230-1238, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36716325

RESUMO

Understanding the dynamics of colloidal nanoparticles (NPs) in a solution is the key to assembling them into solids through a solution process such as electrophoretic deposition. In this study, newly developed in situ analysis with light scattering is used to examine NP dynamics induced by a non-uniform electric field. We reveal that the symmetric directions of moving NP aggregates are due to dielectrophoresis between the cylindrical electrodes, while the actual NP deposition is based on the charge of NPs (electrophoresis). Over time, the symmetry of the dynamics becomes less evident, inducing feeble deposition as the less-ordered dynamics become stronger. Eventually, two separate deposition mechanisms emerge as the deposition rate decreases with the change in the NP dynamics. Furthermore, we identify the vortex-like NP motion between the electrodes. These in situ analyses provide insights into the electrophoretic deposition mechanism and NP behavior in a solution under an electric field for fine film construction.

5.
ACS Omega ; 7(45): 41021-41032, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406526

RESUMO

A strong interparticle connection needs to be realized to harvest unique nanoscale features of colloidal nanoparticles (NPs) in film structures. Constructing a strong contact and adhesion of NPs on a substrate is an essential process for improved NP film properties, and therefore, its key factors should be determined by understanding the NP deposition mechanism. Herein, we investigated the critical factors leading to the robust and strong adherence of the film structure and revealed that the NP deposition mechanism involved the role of surfactant ligands during electrophoretic deposition (EPD). The high amount of surfactant ligand treatment results in a high deposition rate of NPs in the early stage; however, the ligand treatment does not influence the deposition rate in the later stage. Furthermore, the deposition mechanism is found to involve three steps during EPD: island formation, lateral growth, and layer-by-layer deposition. Rapid NP deposition kinetics controlled by ligand treatments demonstrate the strong contact and adhesion of NP film structures; they are characterized by the fast charge transfer, low resistivity, and rigid NP layers of the Cu2-x S NP-based devices. Finally, the controlled role of surfactant ligands in EPD enables design of high-performance nanostructured NP film devices with contact enhancement.

6.
JACS Au ; 2(2): 407-418, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252990

RESUMO

The harvesting of visible light is a powerful strategy for the synthesis of weak chemical bonds involving hydrogen that are below the thermodynamic threshold for spontaneous H2 evolution. Piano-stool iridium hydride complexes are effective for the blue-light-driven hydrogenation of organic substrates and contra-thermodynamic dearomative isomerization. In this work, a combination of spectroscopic measurements, isotopic labeling, structure-reactivity relationships, and computational studies has been used to explore the mechanism of these stoichiometric and catalytic reactions. Photophysical measurements on the iridium hydride catalysts demonstrated the generation of long-lived excited states with principally metal-to-ligand charge transfer (MLCT) character. Transient absorption spectroscopic studies with a representative substrate, anthracene revealed a diffusion-controlled dynamic quenching of the MLCT state. The triplet state of anthracene was detected immediately after the quenching events, suggesting that triplet-triplet energy transfer initiated the photocatalytic process. The key role of triplet anthracene on the post-energy transfer step was further demonstrated by employing photocatalytic hydrogenation with a triplet photosensitizer and a HAT agent, hydroquinone. DFT calculations support a concerted hydrogen atom transfer mechanism in lieu of stepwise electron/proton or proton/electron transfer pathways. Kinetic monitoring of the deactivation channel established an inverse kinetic isotope effect, supporting reversible C(sp2)-H reductive coupling followed by rate-limiting ligand dissociation. Mechanistic insights enabled design of a piano-stool iridium hydride catalyst with a rationally modified supporting ligand that exhibited improved photostability under blue light irradiation. The complex also provided improved catalytic performance toward photoinduced hydrogenation with H2 and contra-thermodynamic isomerization.

7.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34578631

RESUMO

The sulfurization reaction was investigated as a promising fabrication method for preparing metal sulfide nanomaterials. Traditional sulfurization processes generally require high vacuum systems, high reaction temperatures, and toxic chemicals, utilizing complicated procedures with poor composition and morphology controllability. Herein, a facile method is reported for synthesizing nanostructured copper sulfide using a sulfurization reaction with Na2S at room temperature under non-vacuum conditions. Moreover, we demonstrate that the morphology, composition, and optical properties of nanostructured copper sulfides could be controlled by the Na2S solution concentration and the reaction time. Nanostructured copper sulfides were synthesized in nanospheres, nanoplates, and nanoplate-based complex morphologies with various oxidation states. Furthermore, by comparing the optical properties of nanostructured copper sulfides with different oxidation states, we determined that reflectivity in the near infrared (NIR) region decreases with increasing oxidation states. These results reveal that the Na2S solution concentration and reaction time are key factors for designing nanostructured copper sulfides, providing new insights for synthesis methods of metal sulfide nanomaterials.

8.
Nat Chem ; 13(10): 969-976, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253889

RESUMO

The synthesis of weak chemical bonds at or near thermodynamic potential is a fundamental challenge in chemistry, with applications ranging from catalysis to biology to energy science. Proton-coupled electron transfer using molecular hydrogen is an attractive strategy for synthesizing weak element-hydrogen bonds, but the intrinsic thermodynamics presents a challenge for reactivity. Here we describe the direct photocatalytic synthesis of extremely weak element-hydrogen bonds of metal amido and metal imido complexes, as well as organic compounds with bond dissociation free energies as low as 31 kcal mol-1. Key to this approach is the bifunctional behaviour of the chromophoric iridium hydride photocatalyst. Activation of molecular hydrogen occurs in the ground state and the resulting iridium hydride harvests visible light to enable spontaneous formation of weak chemical bonds near thermodynamic potential with no by-products. Photophysical and mechanistic studies corroborate radical-based reaction pathways and highlight the uniqueness of this photodriven approach in promoting new catalytic chemistry.


Assuntos
Hidrogênio/química , Luz , Catálise , Complexos de Coordenação/química , Ligação de Hidrogênio
9.
Angew Chem Int Ed Engl ; 60(26): 14376-14380, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33876539

RESUMO

A four-coordinate cobalt-imido complex, (tBu mPNP)Co=NMes (tBu mPNP=modified PNP pincer ligand) has been synthesized from addition of 2,4,6-trimethylphenylazide (Mes-N3 ) to the corresponding dinitrogen complex. The solid-state structure determined by X-ray diffraction established a rare, idealized planar geometry with a Co=N bond distance of 1.716(2) Å. Magnetic measurements revealed an S=1 ground state with CAS-SCF calculations supporting radical character on the imide nitrogen. Thermolysis of the cobalt-imido compound induced selective insertion of the imido group into a Co-P bond and yielded a three-coordinate cobalt complex with a distorted T-shaped geometry. Transition state analysis conducted with DFT calculations established the thermodynamic stability of the P-N coupled product and provided insight into the exclusive selectivity.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429956

RESUMO

Colloidal nanoparticles (NPs) have been recently spotlighted as building blocks for various nanostructured devices. Their collective properties have been exhibited by arranging them on a substrate to form assembled NPs. In particular, electrophoretic deposition (EPD) is an emerging fabrication method for such nanostructured films. To maximize the benefits of this method, further studies are required to fully elucidate the key parameters that influence the NP deposition. Herein, two key parameters are examined, namely: (i) the aging of colloidal NPs and (ii) the charge formation by surface ligands. The aging of Cu2-xS NPs changes the charge states, thus leading to different NP deposition behaviors. The SEM images of NP films, dynamic light scattering, and zeta potential results demonstrated that the charge control and restoration of interparticle interactions for aged NPs were achieved via simple ligand engineering. The charge control of colloidal NPs was found to be more dominant than the influence of aging, which can alter the surface charges of the NPs. The present results thus reveal that the charge formation on the colloidal NPs, which depends on the surface ligands, is an important controllable parameter in EPD.

11.
Dalton Trans ; 50(6): 2192-2199, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33496697

RESUMO

The chemical transformation from zinc oxide (ZnO) to zinc sulphide (ZnS), using di-tert-butyl disulphide (TBDS) as a highly reactive sulphur precursor, is demonstrated herein. Through anion exchange, we investigate the phase and morphological changes associated with the nanoparticle (NP) transformation of ZnO to ZnS using TBDS. The Zn-O-S alloy was not formed through the anion exchange reaction, only the ZnO and ZnS phases were detected. The NPs were transformed from a solid sphere to a hollow structure, induced by the nanoscale Kirkendall effect. Even with the dramatic shape and phase changes occurring in the NPs, the Zn oxidation state remained as 2+ throughout the 2 h anion exchange reaction. In addition, trioctylphosphine (TOP), a soft base ligand, increased the anion exchange reaction rate, facilitating the reaction with TBDS. Furthermore, anion exchange with elemental sulphur required a longer reaction time (3 h) than that with TBDS (2 h). Consequently, this study offers not only insights into phase and morphological transformations by anion exchange, but also the advantages of utilizing TBDS as a sulphur precursor.

13.
J Am Chem Soc ; 142(20): 9518-9524, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32339454

RESUMO

The catalytic hydrogenation of a metal nitride to produce free ammonia using a rhodium hydride catalyst that promotes H2 activation and hydrogen-atom transfer is described. The phenylimine-substituted rhodium complex (η5-C5Me5)Rh(MePhI)H (MePhI = N-methyl-1-phenylethan-1-imine) exhibited higher thermal stability compared to the previously reported (η5-C5Me5)Rh(ppy)H (ppy = 2-phenylpyridine). DFT calculations established that the two rhodium complexes have comparable Rh-H bond dissociation free energies of 51.8 kcal mol-1 for (η5-C5Me5)Rh(MePhI)H and 51.1 kcal mol-1 for (η5-C5Me5)Rh(ppy)H. In the presence of 10 mol% of the phenylimine rhodium precatalyst and 4 atm of H2 in THF, the manganese nitride (tBuSalen)Mn≡N underwent hydrogenation to liberate free ammonia with up to 6 total turnovers of NH3 or 18 turnovers of H• transfer. The phenylpyridine analogue proved inactive for ammonia synthesis under identical conditions owing to competing deleterious hydride transfer chemistry. Subsequent studies showed that the use of a non-polar solvent such as benzene suppressed formation of the cationic rhodium product resulting from the hydride transfer and enabled catalytic ammonia synthesis by proton-coupled electron transfer.

14.
J Am Chem Soc ; 141(38): 15356-15366, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448912

RESUMO

Engineering site-selectivity is highly desirable especially in C-H functionalization reactions. We report a new catalyst platform that is highly selective for the amidation of benzylic C-H bonds controlled by π-π interactions in the secondary coordination sphere. Mechanistic understanding of the previously developed iridium catalysts that showed poor regioselectivity gave rise to the recognition that the π-cloud of an aromatic fragment on the substrate can act as a formal directing group through an attractive noncovalent interaction with the bidentate ligand of the catalyst. On the basis of this mechanism-driven strategy, we developed a cationic (η5-C5H5)Ru(II) catalyst with a neutral polypyridyl ligand to obtain record-setting benzylic selectivity in an intramolecular C-H lactamization in the presence of tertiary C-H bonds at the same distance. Experimental and computational techniques were integrated to identify the origin of this unprecedented benzylic selectivity, and robust linear free energy relationship between solvent polarity index and the measured site-selectivity was found to clearly corroborate that the solvophobic effect drives the selectivity. Generality of the reaction scope and applicability toward versatile γ-lactam synthesis were demonstrated.

15.
Nano Converg ; 6(1): 17, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155686

RESUMO

There have been tremendous efforts to develop new synthetic methods for creating novel nanoparticles (NPs) with enhanced and desired properties. Among the many synthetic approaches, NP synthesis through ion exchange is a versatile and powerful technique providing a new pathway to design complex structures as well as metastable NPs, which are not accessible by conventional syntheses. Herein, we introduce kinetic and thermodynamic factors controlling the ion exchange reactions in NPs to fully understand the fundamental mechanisms of the reactions. Additionally, many representative examples are summarized to find related advanced techniques and unique NPs constructed by ion exchange reactions. Cation exchange reactions mainly occur in chalcogenide compounds, while anion exchange reactions are mainly involved in halogen (e.g. perovskite) and metal-chalcogenide compounds. It is expected that NP syntheses through ion exchange reactions can be utilized to create new devices with the required properties by virtue of their versatility and ability to tune fine structures.

16.
J Am Chem Soc ; 141(17): 7194-7201, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978019

RESUMO

While remarkable progress has been made over the past decade, new design strategies for chiral catalysts in enantioselective C(sp3)-H functionalization reactions are still highly desirable. In particular, the ability to use attractive noncovalent interactions for rate acceleration and enantiocontrol would significantly expand the current arsenal for asymmetric metal catalysis. Herein, we report the development of a highly enantioselective Ir(III)-catalyzed intramolecular C(sp3)-H amidation reaction of dioxazolone substrates for synthesis of optically enriched γ-lactams using a newly designed α-amino-acid-based chiral ligand. This Ir-catalyzed reaction proceeds with excellent efficiency and with outstanding enantioselectivity for both activated and unactivated alkyl C(sp3)-H bonds under very mild conditions. It offers the first general route for asymmetric synthesis of γ-alkyl γ-lactams. Water was found to be a unique cosolvent to achieve excellent enantioselectivity for γ-aryl lactam production. Mechanistic studies revealed that the ligands form a well-defined groove-type chiral pocket around the Ir center. The hydrophobic effect of this pocket allows facile stereocontrolled binding of substrates in polar or aqueous media. Instead of capitalizing on steric repulsions as in the conventional approaches, this new Ir catalyst operates through an unprecedented enantiocontrol mechanism for intramolecular nitrenoid C-H insertion featuring multiple attractive noncovalent interactions.

17.
Angew Chem Int Ed Engl ; 57(41): 13565-13569, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30151953

RESUMO

Two mechanistic pathways, that is, electrocyclization and electrophilic aromatic substitution, are operative in most intramolecular C-H amination reactions proceeding by metal nitrenoid catalysis. Reported here is an alternative mechanistic scaffold leading to benzofused δ-lactams selectively. Integrated experimental and computational analysis revealed that the reaction proceeds by a key spirocyclization step followed by a skeletal rearrangement. Based on this mechanistic insight, a new synthetic route to spirolactams has been developed.

18.
ACS Cent Sci ; 4(6): 768-775, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974073

RESUMO

Site-selective C-H functionalization is a great challenge in homogeneous transition-metal catalysis. Herein, we present a physical organic approach to delineate the origin of regioselective amidation of N-acylindoles through Ir(III) catalysis. Bulkiness of N-directing groups of indole substrates and electronics of carboxylate additives were identified as two major factors in controlling C2 and C7 selectivity, and their microscopic mechanisms were studied with DFT-based transition state analysis. Computational insights led us to interrogate a linear free energy relationship, and parametrization of molecular determinants enabled the establishment of an intuitive yet robust statistical model that correlates an extensive number of validation data points in high accuracy. This mechanistic investigation eventually allowed the development of a new C2 amidation and alkenylation protocol of indoles, which affords the exclusive functionalization at the C2 position with up to >70:1 selectivity.

19.
Sci Total Environ ; 626: 1236-1242, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898531

RESUMO

This study evaluated surface foam spraying technology, which avoids disturbing the soil, to deliver chemical oxidant and oil-degrading microbes to unsaturated soil for 30 days. Hydrogen peroxide foam was sprayed once onto diesel contaminated soil for oxidation of soil total petroleum hydrocarbon (TPH). Periodic bioaugmentation foam was sprayed every three days for biodegradation of soil TPH. Foam spraying employing oxidation-bioaugmentation serial application significantly reduced soil TPH concentrations to 550 mg·kg-1 from an initial 7470 mg·kg-1. This study selected an optimal hydrogen peroxide concentration of 5%, which is capable of treating diesel oil contaminated soil following biodegradation without supplementary iron. Application of hydrogen peroxide by foam spraying increased the infiltration of hydrogen peroxide into the unsaturated soil. Surface foam spraying provided the aqueous phase of remediation agents evenly to the unsaturated soil and resulted in relatively similar soil water content throughout the soil. The easy and even infiltration of remediation reagents increased their contact with contaminants, resulting in enhanced oxidation and biodegradation. Fractional analysis of TPH showed C18-C22 present in diesel as biodegradation recalcitrant hydrocarbons. Recalcitrant hydrocarbons were reduced by 92% using oxidation-biodegradation serial foam, while biodegradation alone only reduced the recalcitrant fraction by 25%.


Assuntos
Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Petróleo/análise , Poluentes do Solo/química , Biodegradação Ambiental , Oxirredução , Solo , Poluentes do Solo/análise
20.
Science ; 359(6379): 1016-1021, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29496875

RESUMO

Intramolecular insertion of metal nitrenes into carbon-hydrogen bonds to form γ-lactam rings has traditionally been hindered by competing isocyanate formation. We report the application of theory and mechanism studies to optimize a class of pentamethylcyclopentadienyl iridium(III) catalysts for suppression of this competing pathway. Modulation of the stereoelectronic properties of the auxiliary bidentate ligands to be more electron-donating was suggested by density functional theory calculations to lower the C-H insertion barrier favoring the desired reaction. These catalysts transform a wide range of 1,4,2-dioxazol-5-ones, carbonylnitrene precursors easily accessible from carboxylic acids, into the corresponding γ-lactams via sp3 and sp2 C-H amidation with exceptional selectivity. The power of this method was further demonstrated by the successful late-stage functionalization of amino acid derivatives and other bioactive molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...