Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 92(1): 106-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646483

RESUMO

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole bilin-binding photoreceptors of cyanobacteria that exhibit high spectral diversity, gaining attention in optogenetics and bioimaging applications. Several engineering studies on CBCRs were attempted, especially for designing near-infrared (NIR) fluorescent proteins with longer fluorescence wavelengths. However, despite continuous efforts, a key component regulating fluorescence emission property in CBCRs is still poorly understood. As a model system, we focused on red/green CBCR Slr1393g3, from the unicellular cyanobacterium Synechocystis sp. PCC 6803 to engineer Pr to get far-red light-emitting property. Energy profiling and pairwise structural comparison of Slr1393g3 variants effectively reveal the mutations that are critical to the fluorescence changes. H497 seems to play a key role in stabilizing the chromophore environment, especially the α3 helix, while H495, T499, and Q502 are potential key residues determining fluorescence emission peak wavelength. We also found that mutations of α2 and α4 helical regions are closely related to the chromophore binding stability and likely affect fluorescence properties. Taken together, our computational analysis suggests that the fluorescence of Slr1393g3 is mainly controlled by the stabilization of the chromophore binding pocket. The predicted key residues potentially regulating the fluorescence emission property of a red/green CBCR will be advantageous for designing improved NIR fluorescent protein when combined with in vitro molecular evolution approaches.


Assuntos
Cianobactérias , Luz , Fluorescência , Cianobactérias/química , Proteínas de Bactérias/química
2.
J Adv Res ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37926145

RESUMO

INTRODUCTION: Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES: This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS: The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS: At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION: Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.

3.
Mol Cells ; 46(8): 513-525, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37587751

RESUMO

Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.


Assuntos
Cantaxantina , Carotenoides , Valina , Aclimatação , Proteínas de Bactérias/genética
4.
Nat Commun ; 14(1): 1708, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973259

RESUMO

Phytochrome B (phyB) is a plant photoreceptor that forms a membraneless organelle called a photobody. However, its constituents are not fully known. Here, we isolated phyB photobodies from Arabidopsis leaves using fluorescence-activated particle sorting and analyzed their components. We found that a photobody comprises ~1,500 phyB dimers along with other proteins that could be classified into two groups: The first includes proteins that directly interact with phyB and localize to the photobody when expressed in protoplasts, while the second includes proteins that interact with the first group proteins and require co-expression of a first-group protein to localize to the photobody. As an example of the second group, TOPLESS interacts with PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and localizes to the photobody when co-expressed with PCH1. Together, our results support that phyB photobodies include not only phyB and its primary interacting proteins but also its secondary interacting proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo
5.
Front Plant Sci ; 14: 1045917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760652

RESUMO

Temperature is an important regulator of growth in algae and other photosynthetic organisms. Temperatures above or below the optimal growth temperature could cause oxidative stress to algae through accumulation of oxidizing compounds such as reactive oxygen species (ROS). Thus, algal temperature stress tolerance could be attained by enhancing oxidative stress resistance. In plants, alcohol dehydrogenase (ADH) has been implicated in cold stress tolerance, eliciting a signal for the synthesis of antioxidant enzymes that counteract oxidative damage associated with several abiotic stresses. Little is known whether temperature stress could be alleviated by ADH in algae. Here, we generated transgenic lines of the unicellular oleaginous alga Nannochloropsis salina that heterologously expressed sysr1, which encodes ADH in the cyanobacterium Synechocystis sp. PCC 6906. To drive sysr1 expression, the heat shock protein 70 (HSP70) promoter isolated from N. salina was used, as its transcript levels were significantly increased under either cold or heat stress growth conditions. When subjected to cold stress, transgenic N. salina cells were more cold-tolerant than wild-type cells, showing less ROS production but increased activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and catalase. Thus, we suggest that reinforcement of alcohol metabolism could be a target for genetic manipulation to endow algae with cold temperature stress tolerance.

6.
Front Plant Sci ; 13: 997888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212382

RESUMO

Potato (Solanum tuberosum L.) cultivation is threatened by various environmental stresses, especially disease. Genome editing technologies are effective tools for generating pathogen-resistant potatoes. Here, we established an efficient RNP-mediated CRISPR/Cas9 genome editing protocol in potato to develop Phytophthora infestans resistant mutants by targeting the susceptibility gene, Signal Responsive 4 (SR4), in protoplasts. Mutations in StSR4 were efficiently introduced into the regenerated potato plants, with a maximum efficiency of 34%. High co-expression of StEDS1 and StPAD4 in stsr4 mutants induced the accumulation of salicylic acid (SA), and enhanced the expression of the pathogen resistance marker StPR1. In addition, increased SA content in the stsr4 mutant enhanced its resistance to P. infestans more than that in wild type. However, the growth of stsr4_3-19 and stsr4_3-698 mutants with significantly high SA was strongly inhibited, and a dwarf phenotype was induced. Therefore, it is important to adequate SA accumulation in order to overcome StSR4 editing-triggered growth inhibition and take full advantages of the improved pathogen resistance of stsr4 mutants. This RNP-mediated CRISPR/Cas9-based potato genome editing protocol will accelerate the development of pathogen-resistant Solanaceae crops via molecular breeding.

7.
J Exp Bot ; 73(8): 2511-2524, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35139177

RESUMO

An optimal size of post-embryonic root apical meristem (RAM) is achieved by a balance between cell division and differentiation. Despite extensive research, molecular mechanisms underlying the coordination of cell division and differentiation are still fragmentary. Here, we report that ORESARA 15 (ORE15), an Arabidopsis PLANT A/T-RICH SEQUENCE-AND ZINC-BINDING PROTEIN (PLATZ) transcription factor preferentially expressed in the RAM, determines RAM size. Primary root length, RAM size, cell division rate, and stem cell niche activity were reduced in an ore15 loss-of-function mutant but enhanced in an activation-tagged line overexpressing ORE15, compared with wild type. ORE15 forms mutually positive and negative feedback loops with auxin and cytokinin signalling, respectively. Collectively, our findings imply that ORE15 controls RAM size by mediating the antagonistic interaction between auxin and cytokinin signalling-related pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Bioresour Technol ; 340: 125676, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34365302

RESUMO

Transgene expression in microalgae can be hampered by transgene silencing and unstable expression due to position effects. To overcome this, "safe harboring" transgene expression system was established for Nannochloropsis. Initially, transformants were obtained expressing a sfGFP reporter, followed by screening for high expression of sfGFP with fluorescence-activated cell sorter (FACS). 'T1' transcriptional hotspot was identified from a mutant showing best expression of sfGFP, but did not affect growth or lipid contents. By using a Cas9 editor strain, FAD12 gene, encoding Δ12-fatty acid desaturase (FAD12), was successfully knocked-in at the T1 locus, resulting in significantly higher expression of FAD12 than those of random integration. Importantly, the "safe harbored" FAD12 transformants showed four-fold higher production of linoleic acid (LA), the product of FAD12, leading to 1.5-fold increase in eicosapentaenoic acid (EPA). This safe harboring principle provide excellent proof of the concept for successful genetic/metabolic engineering of microalgae and other organisms.


Assuntos
Sistemas CRISPR-Cas , Estramenópilas , Sistemas CRISPR-Cas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Engenharia Genética , Estramenópilas/genética , Estramenópilas/metabolismo , Transgenes
10.
Plants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923378

RESUMO

Both obtaining high-yielding, viable protoplasts and following reliable regeneration protocols are prerequisites for the continuous expansion and development of newly emerging systems involving protoplast utilization. This study determines an efficient process from protoplast isolation to shoot regeneration in vitro. The maximum yield of protoplast extraction, which was 6.36 ± 0.51 × 106 protoplasts/g fresh weight (FW), was approximately 3.7 times higher than that previously reported for potato protoplasts. To obtain data, wounded leaves were used by partially cutting both sides of the midrib, and isolated protoplasts were purified by the sucrose cushion method, with a sucrose concentration of 20%. We confirmed a significant effect on the extraction efficiency by measuring enzymolysis during a 6 h period, with three times more washing buffer than the amount normally used. Protoplasts fixed in alginate lenses with appropriate space were successfully recovered and developed into microcalli 2 weeks after culture. In addition, to induce high efficiency regeneration from protoplasts, calli in which greening occurred for 6 weeks were induced to develop shoots in regeneration medium solidified by Gelrite, and they presented a high regeneration efficiency of 86.24 ± 11.76%.

11.
Plant J ; 104(6): 1736-1745, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103271

RESUMO

Nannochloropsis species, unicellular industrial oleaginous microalgae, are model organisms for microalgal systems and synthetic biology. To facilitate community-based annotation and mining of the rapidly accumulating functional genomics resources, we have initiated an international consortium and present a comprehensive multi-omics resource database named Nannochloropsis Design and Synthesis (NanDeSyn; http://nandesyn.single-cell.cn). Via the Tripal toolkit, it features user-friendly interfaces hosting genomic resources with gene annotations and transcriptomic and proteomic data for six Nannochloropsis species, including two updated genomes of Nannochloropsis oceanica IMET1 and Nannochloropsis salina CCMP1776. Toolboxes for search, Blast, synteny view, enrichment analysis, metabolic pathway analysis, a genome browser, etc. are also included. In addition, functional validation of genes is indicated based on phenotypes of mutants and relevant bibliography. Furthermore, epigenomic resources are also incorporated, especially for sequencing of small RNAs including microRNAs and circular RNAs. Such comprehensive and integrated landscapes of Nannochloropsis genomics and epigenomics will promote and accelerate community efforts in systems and synthetic biology of these industrially important microalgae.


Assuntos
Microalgas/metabolismo , Bases de Dados como Assunto , Epigenômica , Genoma/genética , Genômica , Internet , Redes e Vias Metabólicas , Microalgas/genética , Proteômica , RNA Citoplasmático Pequeno , Biologia Sintética , Transcriptoma/genética
12.
Microorganisms ; 8(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781613

RESUMO

In microalgae, photosynthesis provides energy and sugar phosphates for the biosynthesis of storage and structural carbohydrates, lipids, and nitrogenous proteins. The oleaginous alga Nannochloropsis salina does not preferentially partition photoassimilates among cellulose, chrysolaminarin, and lipids in response to nitrogenous nutrient deprivation. In the present study, we investigated whether genetic impairment of the cellulose synthase gene (CesA) expression would lead to protein accumulation without the accumulation of storage C polymers in N. salina. Three cesA mutants were generated by the CRISPR/Cas9 approach. Cell wall thickness and cellulose content were reduced in the cesA1 mutant, but not in cesA2 or cesA4 cells. CesA1 mutation resulted in a reduction of chrysolaminarin and neutral lipid contents, by 66.3% and 37.1%, respectively, but increased the soluble protein content by 1.8-fold. Further, N. salina cells with a thinned cell wall were susceptible to mechanical stress, resulting in a 1.7-fold enhancement of lipid extractability. Taken together, the previous and current studies strongly suggest the presence of a controlling mechanism that regulates photoassimilate partitioning toward C and N metabolic pathways as well as the cellulose metabolism as a potential target for cost-effective microalgal cell disruption and as a useful protein production platform.

13.
Mol Cells ; 43(7): 645-661, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732458

RESUMO

Leaf senescence is a developmental process by which a plant actively remobilizes nutrients from aged and photosynthetically inefficient leaves to young growing ones by disassembling organelles and degrading macromolecules. Senescence is accelerated by age and environmental stresses such as prolonged darkness. Phytochrome B (phyB) inhibits leaf senescence by inhibiting phytochrome-interacting factor 4 (PIF4) and PIF5 in prolonged darkness. However, it remains unknown whether phyB mediates the temperature signal that regulates leaf senescence. We found the light-activated form of phyB (Pfr) remains active at least four days after a transfer to darkness at 20°C but is inactivated more rapidly at 28°C. This faster inactivation of Pfr further increases PIF4 protein levels at the higher ambient temperature. In addition, PIF4 mRNA levels rise faster after the transfer to darkness at high ambient temperature via a mechanism that depends on ELF3 but not phyB. Increased PIF4 protein then binds to the ORE1 promoter and activates its expression together with ABA and ethylene signaling, accelerating leaf senescence at high ambient temperature. Our results support a role for the phy-PIF signaling module in integrating not only light signaling but also temperature signaling in the regulation of leaf senescence.


Assuntos
Envelhecimento/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo B/metabolismo , Folhas de Planta/metabolismo , Ácido Abscísico/metabolismo , Envelhecimento/genética , Envelhecimento/efeitos da radiação , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoprecipitação da Cromatina , Escuridão , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cells ; 43(6): 509-516, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32438780

RESUMO

To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.


Assuntos
Cianobactérias/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cor , Transdução de Sinal Luminoso , Fitocromo/química
15.
J Biol Chem ; 295(19): 6754-6766, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32184354

RESUMO

The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cianobactérias/genética , Mutação de Sentido Incorreto , Fotorreceptores Microbianos/genética , Fitocromo/genética
16.
Plant Mol Biol ; 102(6): 615-624, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997111

RESUMO

KEY MESSAGE: PTR2 in Arabidopsis thaliana is negatively regulated by ABI4 and plays a key role in water uptake by seeds, ensuring that imbibed seeds proceed to germination. Peptide transporters (PTRs) transport nitrogen-containing substrates in a proton-dependent manner. Among the six PTRs in Arabidopsis thaliana, the physiological role of the tonoplast-localized, seed embryo abundant PTR2 is unknown. In the present study, a molecular physiological analysis of PTR2 was conducted using ptr2 mutants and PTR2CO complementation lines. Compared with the wild type, the ptr2 mutant showed ca. 6 h delay in testa rupture and consequently endosperm rupture because of 17% lower water content and 10% higher free abscisic acid (ABA) content. Constitutive overexpression of the PTR2 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter in ptr2 mutants rescued the mutant phenotypes. After cold stratification, a transient increase in ABA INSENSITIVE4 (ABI4) transcript levels during induction of testa rupture was followed by a similar increase in PTR2 transcript levels, which peaked prior to endosperm rupture. The PTR2 promoter region containing multiple CCAC motifs was recognized by ABI4 in electrophoretic mobility shift assays, and PTR2 expression was repressed by 67% in ABI4 overexpression lines compared with the wild type, suggesting that PTR2 is an immediate downstream target of ABI4. Taken together, the results suggest that ABI4-dependent temporal regulation of PTR2 expression may influence water status during seed germination to promote the post-germinative growth of imbibed seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Germinação/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Sementes/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 10(1): 676, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959801

RESUMO

Like other halophilic cyanobacterial genomes, the de novo-assembled genome of Euhalothece sp. Z-M001 lacks genes encoding keto-carotenoid biosynthesis enzymes, despite the presence of genes encoding carotenoid-binding proteins (CBPs). Consistent with this, HPLC analysis of carotenoids identified ß-carotene and zeaxanthin as the dominant carotenoids. CBPs coexpressed with the zeaxanthin biosynthesis gene increased the survival rates of Escherichia coli strains by preventing antibiotic-induced accumulation of reactive oxygen species (ROS). RNA-seq analysis of Euhalothece revealed that among various salt resistance-related genes, those encoding the Na+ transporting multiple resistance and pH adaptation (Mrp) systems, glycine betaine biosynthesis enzymes, exopolysaccharide metabolic enzymes, and CBPs were highly upregulated, suggesting their importance in hypersaline habitats. During the early phase of salt deprivation, the amounts of ß-carotene and zeaxanthin showed a negative correlation with ROS content. Overall, we propose that in some halophilic cyanobacteria, ß-carotene and zeaxanthin, rather than keto-carotenoids, serve as the major chromophores for CBPs, which in turn act as effective antioxidants.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano/genética , Genômica , Tolerância ao Sal/genética , Sais/metabolismo , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Espécies Reativas de Oxigênio/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/metabolismo
18.
Plants (Basel) ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878277

RESUMO

Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.

19.
Microorganisms ; 8(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877906

RESUMO

Endophytic bacteria (EB) are both a novel source of bioactive compounds that confer phytopathogen resistance and inducers of secondary metabolites in host plants. Twenty-seven EB isolated from various parts of Metasequoia glyptostroboides, Ginkgo biloba, Taxus brevifolia, Pinus densiflora, Salix babylonica, and S. chaenomeloides could produce salicylic acid (SA). The highest producers were isolates EB-44 and EB-47, identified as Pseudomonas tremae and Curtobacterium herbarum, respectively. Nicotiana benthamiana grown from EB-44-soaked seeds exhibited a 2.3-fold higher endogenous SA concentration and increased resistance against P. syringae pv. tabaci, the causative agent of tobacco wildfire disease, than plants grown from water-soaked seeds. N benthamiana and N. tabacum grown from EB-44-treated seeds developed 33% and 54% disease lesions, respectively, when infected with P. syringae pv. tabaci, and showed increased height and weight, in addition to 4.6 and 1.4-fold increases in nicotine accumulation, respectively. The results suggest that SA-producing EB-44 can successfully colonize Nicotiana spp., leading to increased endogenous SA production and resistance to tobacco wildfire disease. The newly isolated EB can offer an efficient and eco-friendly solution for controlling wildfire disease and nicotine accumulation in Nicotiana, with additional application for other important crops to increase both productivity and the generation of bioactive compounds.

20.
Plant Cell Physiol ; 60(11): 2538-2548, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31359042

RESUMO

Although the importance of chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins has been established for chloroplast RNA metabolism and plant development, the functional role of CRM proteins in mitochondria remains largely unknown. Here, we investigated the role of a mitochondria-targeted CRM protein (At3g27550), named CFM9, in Arabidopsis thaliana. Confocal analysis revealed that CFM9 is localized in mitochondria. The cfm9 mutant exhibited delayed seed germination, retarded growth and shorter height compared with the wild type under normal conditions. The growth-defect phenotypes were more manifested upon high salinity, dehydration or ABA application. Complementation lines expressing CFM9 in the mutant background fully recovered the wild-type phenotypes. Notably, the mutant had abnormal mitochondria, increased hydrogen peroxide and reduced respiration activity, implying that CFM9 is indispensable for normal mitochondrial function. More important, the splicing of many intron-containing genes in mitochondria was defective in the mutant, suggesting that CFM9 plays a crucial role in the splicing of mitochondrial introns. Collectively, our results provide clear evidence emphasizing that CFM9 is an essential factor in the splicing of mitochondrial introns, which is crucial for mitochondrial biogenesis and function and the growth and development of Arabidopsis.


Assuntos
Processamento Alternativo/genética , Arabidopsis/metabolismo , Íntrons/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...