Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116674, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703509

RESUMO

Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1ß, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.

2.
Sci Rep ; 14(1): 9099, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643310

RESUMO

To investigate the impact on the ovarian reserve after minimally invasive ovarian cystectomy using two platforms, the Da Vinci robotic system (Xi and SP) and the laparoscopic system. Patients underwent laparoscopic or Da Vinci robotic (Xi or SP) ovarian cystectomy for benign ovarian cysts between January 1, 2018, and December 31, 2022 at Guro Hospital, Korea University Medical center. We measured the change of AMH values (%) = [(postAMH - preAMH)] × 100/preAMH. No significant differences in preoperative age, cyst size, estimated blood loss during surgery, hemoglobin drop, length of hospital stay, adhesion detachment rate and cyst rupture rate were observed. However, the operative time was significantly shorter in the laparoscopic group than that in the robotic group (67.78 ± 30.58 min vs. 105.17 ± 38.87 min, p < 0.001) The mean preAMH and postAMH were significantly higher with the Da Vinci robotic group than with the laparoscopic group (preAMH: 5.89 ± 4.81 ng/mL vs. 4.01 ± 3.59 ng/mL, p = 0.02, postAMH: 4.36 ± 3.31 ng/mL vs. 3.08 ± 2.60 ng/mL, p = 0.02). However, the mean ΔAMH was not significantly different between two groups. ΔAMH also did not demonstrate significant differences among the three groups; laparoscopic, Xi and SP robotic. Even in the patient groups with preAMH < 2 and diagnosed with endometriosis, the ΔAMH did not show significant differences between the laparoscopic and robotic groups. The Da Vinci robotic system is no inferior to conventional laparoscopic systems in preserving ovarian function.


Assuntos
Cistos , Laparoscopia , Reserva Ovariana , Procedimentos Cirúrgicos Robóticos , Feminino , Humanos , Hormônio Antimülleriano , Cistectomia , Resultado do Tratamento
3.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218190

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Assuntos
Córtex Cerebral , Neurônios , Neurônios/fisiologia , Organoides/fisiologia , Encéfalo , Neurotransmissores
4.
Nat Commun ; 14(1): 5364, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666808

RESUMO

Biological membrane channels mediate information exchange between cells and facilitate molecular recognition. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout, which results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces. Here we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioprotonic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin and the cardiac biomarker B-type natriuretic peptide, without modifying the biomolecules. We anticipate this robust interface will allow facile electronic measurement and quantification of biomolecules in a multiplexed manner.


Assuntos
Membranas Artificiais , Nanoporos , Bicamadas Lipídicas , Membrana Celular , DNA
5.
J Org Chem ; 88(14): 9902-9909, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37392432

RESUMO

A sulfamidate-based stereoselective total synthesis of (+)-preussin has been developed. The key step involves a gold(I)-catalyzed intramolecular dehydrative amination of sulfamate esters tethered to allylic alcohols, which allows for the construction of the cyclic sulfamidate with high stereoselectivity. Further manipulation to highly constrained bicyclic sulfamidate and the following ring-opening process afford 3-hydroxypyrrolidine motif stereoselectively. The energy of the constrained bicyclic ring system is relieved by the subsequent ring-opening process, which leads to a stereoselective formation of the 3-hydroxypyrrolidine motif under mild reaction conditions. The success of this approach not only provides a new method for the total synthesis of enantiomerically pure (+)-preussin but also highlights the synthetic utility of sulfamidates in constructing valuable natural product architectures.

6.
J Phys Chem B ; 127(28): 6316-6324, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37432843

RESUMO

Supported lipid bilayers (SLBs) are commonly used to investigate interactions between cell membranes and their environment. These model platforms can be formed on electrode surfaces and analyzed using electrochemical methods for bioapplications. Carbon nanotube porins (CNTPs) integrated with SLBs have emerged as promising artificial ion channel platforms. In this study, we present the integration and ion transport characterization of CNTPs in in vivo environments. We combine experimental and simulation data obtained from electrochemical analysis to analyze the membrane resistance of the equivalent circuits. Our results show that carrying CNTPs on a gold electrode results in high conductance for monovalent cations (K+ and Na+) and low conductance for divalent cations (Ca2+).


Assuntos
Bicamadas Lipídicas , Nanotubos de Carbono , Bicamadas Lipídicas/química , Nanotubos de Carbono/química , Membrana Celular/química , Canais Iônicos , Porinas/química , Transporte de Íons
7.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447325

RESUMO

OBJECTIVES: Formononetin is one of the phytoestrogens that functions like a selective estrogen receptor modulator (SERM). In this study, we evaluated the effects of formononetin on endometriosis progression in vitro and in vivo. MATERIALS AND METHODS: After pathological confirmation, 10 eutopic and ectopic endometria were collected from patients with endometriosis. Ten eutopic endometria samples were collected from patients who did not have endometriosis. To determine the cytotoxic dose and therapeutic dose of formononetin, the concentration of 70% of the cells that survived after formononetin administration was estimated using a Cell counting kit-8 (CCK 8) assay. Western blot analysis was used to determine the relative expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 in the eutopic endometria without endometriosis, eutopic endometria with endometriosis, and ectopic endometria with endometriosis as the formononetin concentration was increased. We confirmed the effect of formononetin on apoptosis and migration in endometriosis using fluorescence-activated cell sorting (FACS) and wound healing assays, respectively. A mouse model of endometriosis was prepared using a non-surgical method, as previously described. The mice were intraperitoneally administered formononetin for four weeks after dividing them into control, low-dose formononetin (40 mg/kg/day) treatment, and high-dose (80 mg/kg/day) formononetin treatment groups. All the mice were euthanized after formononetin treatment. Endometriotic lesions were retrieved and confirmed using hematoxylin and eosin (H&E) staining. Immunohistochemical (IHC) staining of p27 was performed. RESULTS: We set the maximum concentration of formononetin administration to 80 µM through the CCK8 assay. Based on formononetin concentration, the expression levels of BAX, p53, pAKT, ERK, pERK, p27, and pSTAT3 proteins were measured using Western blot analysis (N = 4 per group). The expression level of pERK, p27, and pSTAT3 in eutopic endometrium with endometriosis tended to decrease with increasing formononetin concentration, and a significant decrease was noted at 80 µM. The expression of p27 in ectopic endometrium with endometriosis was also significantly decreased at 80 µM of formononetin. FACS analysis revealed that formononetin did not significantly affect apoptosis. In the wound healing assay, formononetin treatment revealed a more significant decrease in the proliferation of the eutopic endometrium in patients with endometriosis than in the eutopic endometrium without endometriosis. Relative expression of sex hormone receptors decreased with increasing formononetin doses. Although no significant differences were observed in the ER, PR-A, ERß/ERα, and PR-B/PR-A, significant down-regulation of PR-B expression was noted after formononetin treatment at 80 µM. In the in vivo study, endometriotic lesions in the formononetin-treated group significantly decreased compared to those in the control group. The relative expression of p27 using IHC was highest in the control group and lowest in the high-dose formononetin treatment group. CONCLUSIONS: Formononetin treatment was shown to inhibit the proliferation of eutopic and ectopic endometria in patients with endometriosis through the regulation of p27, pSTAT3, and PR-B. In an endometriosis mouse model, formononetin treatment significantly reduced the number of endometriotic lesions with decreased p27 expression. The results of this study suggest that formononetin may be used as a non-hormonal treatment option for endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Animais , Camundongos , Endometriose/tratamento farmacológico , Endometriose/patologia , Receptores de Progesterona/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Endométrio/metabolismo
8.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333351

RESUMO

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

9.
J Phys Chem B ; 127(10): 2277-2285, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36882905

RESUMO

The ability to form robust, optoelectronically responsive, and mechanically tunable hydrogels using facile processing is desirable for sensing, biomedical, and light-harvesting applications. We demonstrate that such a hydrogel can be formed using aqueous complexation between one conjugated and one nonconjugated polyelectrolyte. We show that the rheological properties of the hydrogel can be tuned using the regioregularity of the conjugated polyelectrolyte (CPE) backbone, leading to significantly different mesoscale gel morphologies. We also find that the exciton dynamics in the long-time limit reflect differences in the underlying electronic connectivity of the hydrogels as a function CPE regioregularity. The influence of excess small ions on the hydrogel structure and the exciton dynamics similarly depends on the regioregularity in a significant way. Finally, electrical impedance measurements lead us to infer that these hydrogels can act as mixed ionic/electronic conductors. We believe that such gels possess an attractive combination of physical-chemical properties that can be leveraged in multiple applications.

10.
J Org Chem ; 87(16): 10836-10847, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35946352

RESUMO

The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.


Assuntos
Produtos Biológicos , Glioma , Fármacos Neuroprotetores , Produtos Biológicos/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia
11.
Biosensors (Basel) ; 11(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918811

RESUMO

Sensing targeted tumor markers with high sensitivity provides vital information for the fast diagnosis and treatment of cancer patients. A vascular endothelial growth factor (VEGF165) have recently emerged as a promising biomarker of tumor cells. The electrochemical aptasensor is a promising tool for detecting VEGF165 because of its advantages such as a low cost and quantitative analysis. To produce a sensitive and stable sensor electrode, nanocomposites based on polyaniline (PANI) and carbon nanotube (CNT) have potential, as they provide for easy fabrication, simple synthesis, have a large surface area, and are suitable in biological environments. Here, a label-free electrochemical aptasensor based on nanocomposites of CNT and PANI was prepared for detecting VEGF165 as a tumor marker. The nanocomposite was assembled with immobilized VEGF165 aptamer as a highly sensitive VEGF165 sensor. It exhibited stable and wide linear detection ranges from 0.5 pg/mL to 1 µg/mL, with a limit of detection of 0.4 pg/mL because of the complementary effect of PANI/CNT. The fabricated aptasensor also exhibited good stability in biological conditions, selectivity, and reproducibility after several measurement times after the dissociation process. Thus, it could be applied for the non-invasive determination of VEGF, in biological fluid diagnosis kits, or in an aptamer-based biosensor platform in the near future.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Fator A de Crescimento do Endotélio Vascular/análise , Compostos de Anilina , Biomarcadores Tumorais , Eletrodos , Humanos , Nanotubos de Carbono , Reprodutibilidade dos Testes
12.
Sci Rep ; 10(1): 10514, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601279

RESUMO

2'-Fucosyllactose (2'-FL), a major component of fucosylated human milk oligosaccharides, is beneficial to human health in various ways like prebiotic effect, protection from pathogens, anti-inflammatory activity and reduction of the risk of neurodegeneration. Here, a whole-cell fluorescence biosensor for 2'-FL was developed. Escherichia coli (E. coli) was engineered to catalyse the cleavage of 2'-FL into L-fucose and lactose by constitutively expressing α-L-fucosidase. Escherichia coli ∆L YA, in which lacZ is deleted and lacY is retained, was employed to disable lactose consumption. E. coli ∆L YA constitutively co-expressing α-L-fucosidase and a red fluorescence protein (RFP) exhibited increased fluorescence intensity in media containing 2'-FL. However, the presence of 50 g/L lactose reduced the RFP intensity due to lactose-induced cytotoxicity. Preadaptation of bacterial strains to fucose alleviated growth hindrance by lactose and partially recovered the fluorescence intensity. The fluorescence intensity of the cell was linearly proportional to 1-5 g/L 2'-FL. The whole-cell sensor will be versatile in developing a 2'-FL detection system.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/genética , Proteínas Luminescentes/genética , Trissacarídeos/análise , Microrganismos Geneticamente Modificados
13.
RSC Adv ; 10(61): 37202-37208, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521290

RESUMO

A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.

14.
Molecules ; 24(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540061

RESUMO

New 1,2,3-triazolium ionic liquid-supported chiral imidazolidinones were developed. The feasibility of the ionic liquid-supported imidazolidinones as chiral auxiliaries was demonstrated in sequential propionylation-alkylation-cleavage reactions, which provided the chiral product with good to excellent chemical yields (up to 90%) and high selectivities (up to 94% ee). The progress of the reactions could be monitored by TLC and NMR, and the ionic liquid-supported chiral auxiliaries could be recovered by simple extraction.


Assuntos
Imidazolidinas/química , Imidazolidinas/síntese química , Líquidos Iônicos/química , Líquidos Iônicos/síntese química , Alquilação , Estereoisomerismo
15.
Biosens Bioelectron ; 142: 111512, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336225

RESUMO

We demonstrate a bionanoelectronic platform for a supported lipid bilayer formed on an MoS2 film for biosensing, biomolecule recognition, and bioelectronic applications. A large-area MoS2 film was synthesized on a sapphire substrate and treated with O2 plasma or Al2O3 deposition to change the surface from hydrophobic to hydrophilic. Measurements of fluorescence and fluorescence recovery after photobleaching confirmed the physical properties of the lipid bilayer on the treated surfaces. We fabricated an electronic device using the treated MoS2 film and characterized the influence of the lipid bilayer on its electrical properties. Furthermore, transmembrane ion channels peptide (gramicidin A) were incorporated into the lipid bilayer and modulations of the electrical properties of the device under various pH conditions and calcium ion were observed. This sensitive and stable platform has strong potential for housing artificial channels and transmembrane ion channels for advanced bioapplications.


Assuntos
Técnicas Biossensoriais/instrumentação , Dissulfetos/química , Bicamadas Lipídicas/química , Molibdênio/química , Nanoestruturas/química , Transistores Eletrônicos , Desenho de Equipamento , Gramicidina/química , Proteínas Imobilizadas/química
16.
ACS Synth Biol ; 8(5): 1055-1066, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31018087

RESUMO

Whole cell biocatalysts can be used to convert fatty acids into various value-added products. However, fatty acid transport across cellular membranes into the cytosol of microbial cells limits substrate availability and impairs membrane integrity, which in turn decreases cell viability and bioconversion activity. Because these problems are associated with the mechanism of fatty acid transport through membranes, a whole-cell biocatalyst that can form caveolae-like structures was generated to promote substrate endocytosis. Caveolin-1 ( CAV1) expression in Escherichia coli increased both the fatty acid transport rate and intracellular fatty acid concentrations via endocytosis of the supplemented substrate. Furthermore, fatty-acid endocytosis alleviated substrate cytotoxicity in E. coli. These traits attributed to bacterial endocytosis resulted in dramatically elevated biotransformation efficiencies in fed-batch and cell-recycle reaction systems when caveolae-forming E. coli was used for the bioconversion of ricinoleic acid (12-hydroxyoctadec-9-enoic acid) to ( Z)-11-(heptanoyloxy) undec-9-enoic acid. We propose that CAV1-mediated endocytosing E. coli represents a versatile tool for the biotransformation of hydrophobic substrates.


Assuntos
Endocitose , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Biocatálise , Biotransformação , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Ácidos Graxos/química , Ácidos Ricinoleicos/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-31998709

RESUMO

Recombinant whole-cell biocatalysts are widely used for biotransformation of valuable products. However, some key enzymes involved in biotransformation processes are unstable and cannot be easily expressed in the functional form. In this study, we describe a versatile platform for enzyme stabilization inside the cell: Intracellularly Immobilized Enzyme System (IIES). A 1,2-fucosyltransferase from Pedobactor saltans (PsFL) and a 1,3-fucosyltransferase from Helicobacter pylori (HpFL), chosen as model proteins, were fused with Oct-1 DNA-binding domain, which mediated the formation of a plasmid-protein complex. Oct-1 fusion enabled both soluble and stable expression of recombinant proteins in the cytoplasm because the fusion proteins were stabilized on the plasmid like immobilized enzymes bound to solid surface. As a result, Oct-1-fusion proteins exhibited significantly greater product titer and yield than non-fusion proteins. Use of fusion proteins PsFL-Oct-1 with C-terminal Oct-1 and Oct-1-PsFL with N-terminal Oct-1 resulted in ~3- and ~2-fold higher 2'-fucosyllactose titers, respectively, than with the use of PsFL alone. When Oct-1 was fused to HpFL, which requires dimerization through heptad repeats, almost two times more 3-fucosyllactose was produced. Fucosyllactose has been used as a food additive because it has various beneficial effects on human health. We anticipate that IIES using Oct-1 fusion protein developed in this study can be applied to stabilize other unstable enzymes.

18.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949908

RESUMO

Carbon nanotubes are frequently selected for supercapacitors because of their major intrinsic properties of mechanical and chemical stability, in addition to their excellent electrical conductivity. However, electrodes using carbon nanotubes suffer from severe performance degradation by the phenomenon of re-stacking during fabrication, which hinders ion accessibility. In this study, short single-wall carbon nanotubes were further shortened by sonication-induced cutting to increase the proportion of edge sites. This longitudinally short structure preferentially exposes the active edge sites, leading to high capacitance during operation. Supercapacitors assembled using the shorter-cut nanotubes exhibit a 7-fold higher capacitance than those with pristine single-wall nanotubes while preserving other intrinsic properties of carbon nanotubes, including excellent cycle performance and rate capability. The unique structure suggests a design approach for achieving a high specific capacitance with those low-dimensional carbon materials that suffer from re-stacking during device fabrication.

19.
Org Biomol Chem ; 14(3): 913-9, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26608925

RESUMO

We have developed a straightforward and auxiliary-free synthetic route towards tBu-tubuphenylalanine (tBu-Tup) and tBu-epi-tubuphenylalanine (tBu-epi-Tup), which are the key components of tubulysins and their analogs. A Lewis acid-mediated diastereoselective Mukaiyama aldol reaction using silyl ketene acetal and N-Boc-L-phenylalaninal provided γ-amino-ß-hydroxyl-α-methyl esters, which were deoxygenated to γ-amino-α-methyl esters under Barton-McCombie deoxygenation conditions. Notably, the desired tBu-Tup and tBu-epi-Tup were obtained in good overall yields in four steps.


Assuntos
Acetais/química , Aldeídos/química , Aminoácidos Aromáticos/síntese química , Etilenos/química , Cetonas/química , Silanos/química , Estrutura Molecular , Estereoisomerismo
20.
Bioorg Med Chem ; 23(21): 6827-43, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26474666

RESUMO

The synthesis of tubulysin analogs containing stereochemically diverse cyclic Tuv moieties is described. A tetrahydropyranyl moiety was incorporated into the Tuv unit by enantioselective hetero Diels-Alder reactions of Danishefsky's diene and thiazole aldehyde. Four different stereoisomers of cyclic Tuv units were used as surrogates for the Tuv moiety. The synthesized stereochemically diverse simplified cyclic analogs were evaluated for the inhibition of tubulin polymerization.


Assuntos
Antineoplásicos/síntese química , Oligopeptídeos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Catálise , Reação de Cicloadição , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Estereoisomerismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...