Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurology ; 96(13): e1783-e1791, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33568546

RESUMO

OBJECTIVE: To test the hypothesis that de novo genetic variants are responsible for moyamoya disease (MMD) in children with unaffected relatives, we performed exome sequencing of 28 affected children and their unaffected parents. METHODS: Exome sequencing was performed on 28 trios of affected patients with MMD and unaffected parents. RESULTS: We identified 3 novel rare de novo RNF213 variants, 1 in the RING domain and 2 in a highly conserved region distal to the RING domain (4,114-4,120). These de novo cases of MMD present at a young age with aggressive MMD and uniquely have additional occlusive vascular lesions, including renal artery stenosis. Two previously reported cases had de novo variants in the same limited region and presented young with aggressive MMD, and 1 case had narrowing of the inferior abdominal aorta. CONCLUSIONS: These results indicate a novel syndrome associated with RNF213 rare variants defined by de novo mutations disrupting highly conserved amino acids in the RING domain and a discrete region distal to the RING domain delimited by amino acids 4,114 to 4,120 leading to onset of severe MMD before 3 years of age and occlusion of other arteries, including the abdominal aorta, renal, iliac, and femoral arteries.


Assuntos
Adenosina Trifosfatases/genética , Doença de Moyamoya/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idade de Início , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Arteriopatias Oclusivas/genética , Arteriopatias Oclusivas/fisiopatologia , Pré-Escolar , Feminino , Artéria Femoral , Humanos , Artéria Ilíaca , Masculino , Doença de Moyamoya/fisiopatologia , Mutação , Obstrução da Artéria Renal/genética , Obstrução da Artéria Renal/fisiopatologia
2.
Eur J Med Genet ; 63(2): 103730, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31323331

RESUMO

The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT) with joint hypermobility, skin hyperextensibility and tissue fragility, which were recently re-classified (2017 International Classification). Most patients (>90%) with Classical Ehlers-Danlos syndrome (cEDS) have a mutation in the COL5A1 or COL5A2 genes encoding type V procollagen. A small number of patients with the p.Arg312Cys mutation in COL1A1 have been reported with overlapping features of both cEDS and vascular EDS (vEDS). In this report, we describe two patients from a large family with this mutation and clinical features consistent with cEDS without vascular complications. The proband presented with congenital hip dislocation (previously reported in one patient), the mother of the proband with multiple fractures in childhood, and dental defects (novel findings). The small number of patients reported with this mutation and proportion with vascular complications suggests that vascular surveillance should still be recommended.


Assuntos
Colágeno Tipo I/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Adolescente , Adulto , Osso e Ossos/patologia , Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Ehlers-Danlos/diagnóstico por imagem , Feminino , Fraturas Ósseas/genética , Humanos , Mutação , Linhagem , Fenótipo , Anormalidades da Pele/genética
3.
Am J Med Genet A ; 179(12): 2500-2505, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633303

RESUMO

Grange syndrome (OMIM 602531) is an autosomal recessive condition characterized by severe early onset vascular occlusive disease and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Grange syndrome is caused by homozygous or compound heterozygous loss-of-function variants in the YYA1P1 gene. We report on the case of a 53-year old female with novel homozygous missense variants in YYA1P1 (c.1079C>T, p.Pro360Leu), presenting with a history of brachysyndactyly, hypertension, and ischemic stroke. Imaging studies revealed stenosis of the bilateral internal carotid with extensive collateralization of cerebral vessels in a moyamoya-like pattern, along with stenosis in the splenic, common hepatic, celiac, left renal, and superior mesenteric arteries. Functional studies conducted with the patient's dermal fibroblasts suggest that the p.Pro360Leu variant decreases the stability of the YY1AP1 protein. This is the first report of a missense variant associated with Grange syndrome characterized by later onset of vascular disease and a lack of developmental delay and bone fragility.


Assuntos
Arteriopatias Oclusivas/diagnóstico , Arteriopatias Oclusivas/genética , Osso e Ossos/anormalidades , Braquidactilia/diagnóstico , Braquidactilia/genética , Proteínas de Ciclo Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Homozigoto , Hipertensão/diagnóstico , Hipertensão/genética , Mutação de Sentido Incorreto , Sindactilia/diagnóstico , Sindactilia/genética , Fatores de Transcrição/genética , Linhagem Celular , Angiografia por Tomografia Computadorizada , Consanguinidade , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Tomografia Computadorizada por Raios X
4.
Hum Mutat ; 39(12): 1916-1925, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084155

RESUMO

Transposable elements modify human genome by inserting into new loci or by mediating homology-, microhomology-, or homeology-driven DNA recombination or repair, resulting in genomic structural variation. Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal neonatal developmental lung disorder caused by point mutations or copy-number variant (CNV) deletions of FOXF1 or its distant tissue-specific enhancer. Eighty-five percent of 45 ACDMPV-causative CNV deletions, of which junctions have been sequenced, had at least one of their two breakpoints located in a retrotransposon, with more than half of them being Alu elements. We describe a novel ∼35 kb-large genomic instability hotspot at 16q24.1, involving two evolutionarily young LINE-1 (L1) elements, L1PA2 and L1PA3, flanking AluY, two AluSx, AluSx1, and AluJr elements. The occurrence of L1s at this location coincided with the branching out of the Homo-Pan-Gorilla clade, and was preceded by the insertion of AluSx, AluSx1, and AluJr. Our data show that, in addition to mediating recurrent CNVs, L1 and Alu retrotransposons can predispose the human genome to formation of variably sized CNVs, both of clinical and evolutionary relevance. Nonetheless, epigenetic or other genomic features of this locus might also contribute to its increased instability.


Assuntos
Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA , Instabilidade Genômica , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Elementos Alu , Evolução Molecular , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Humanos , Elementos Nucleotídeos Longos e Dispersos , Linhagem , Mutação Puntual
5.
Hum Mutat ; 39(5): 621-634, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29392890

RESUMO

The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.


Assuntos
Estudos de Associação Genética , Síndrome de Loeys-Dietz/genética , Mutação/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Camundongos , Transdução de Sinais/genética
6.
JAMA Ophthalmol ; 132(12): 1393-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25124931

RESUMO

IMPORTANCE: Retinal detachment with avascularity of the peripheral retina, typically associated with familial exudative vitreoretinopathy (FEVR), can result from mutations in KIF11, a gene recently identified to cause microcephaly, lymphedema, and chorioretinal dysplasia (MLCRD) as well as chorioretinal dysplasia, microcephaly, and mental retardation (CDMMR). Ophthalmologists should be aware of the range of presentations for mutations in KIF11 because the phenotypic distinction between FEVR and MLCRD/CDMMR portends management implications in patients with these conditions. OBJECTIVE: To identify gene mutations in patients who present with a FEVR phenotype and explore the spectrum of ocular and systemic abnormalities caused by KIF11 mutations in a cohort of patients with FEVR or microcephaly in conjunction with chorioretinopathy or FEVR. DESIGN, SETTING, AND PARTICIPANTS: Clinical data and DNA were collected from each participant between 1998 and 2013 from the clinical practices of ophthalmologists and clinical geneticists internationally. Twenty-eight FEVR probands with diagnoses made by the referring physician and without a known FEVR gene mutation, and 3 with microcephaly and chorioretinopathy, were included. At least 1 patient in each pedigree manifested 1 or more of the following: macular dragging, partial retinal detachment, falciform folds, or total retinal detachment. EXPOSURES: Whole-exome sequencing was conducted on affected members in multiplex pedigrees, and Sanger sequencing of the 22 exons of the KIF11 gene was performed on singletons. Clinical data and history were collected and reviewed. MAIN OUTCOMES AND MEASURES: Identification of mutations in KIF11. RESULTS: Four novel heterozygous KIF11 mutations and 1 previously published mutation were identified in probands with FEVR: p.A218Gfs*15, p.E470X, p.R221G, c.790-1G>T, and the previously described heterozygous p.R47X. Documentation of peripheral avascular areas on intravenous fluorescein angiography was possible in 2 probands with fibrovascular proliferation demonstrating phenotypic overlap with FEVR. CONCLUSIONS AND RELEVANCE: Mutations in KIF11 cause a broader spectrum of ocular disease than previously reported, including retinal detachment. The KIF11 gene likely plays a role in retinal vascular development and mutations in this gene can lead to clinical overlap with FEVR. Cases of FEVR should be carefully inspected for the presence of microcephaly as a marker for KIF11-related disease to enhance the accuracy of the prognosis and genetic counseling.


Assuntos
Cinesinas/genética , Linfedema/genética , Microcefalia/genética , Mutação , Displasia Retiniana/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletrofisiologia , Éxons/genética , Oftalmopatias Hereditárias , Fácies , Vitreorretinopatias Exsudativas Familiares , Feminino , Angiofluoresceinografia , Humanos , Linfedema/diagnóstico , Masculino , Microcefalia/diagnóstico , Dados de Sequência Molecular , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Displasia Retiniana/diagnóstico
7.
Am J Med Genet A ; 164A(1): 62-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24243649

RESUMO

A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 19 , Fenótipo , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Feminino , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Humanos , Lactente , Masculino , Síndrome
8.
Nat Genet ; 43(4): 360-4, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21358631

RESUMO

Meier-Gorlin syndrome is a rare autosomal recessive genetic condition whose primary clinical hallmarks include small stature, small external ears and small or absent patellae. Using marker-assisted mapping in multiple families from a founder population and traditional coding exon sequencing of positional candidate genes, we identified three different mutations in the gene encoding ORC4, a component of the eukaryotic origin recognition complex, in five individuals with Meier-Gorlin syndrome. In two such individuals that were negative for mutations in ORC4, we found potential mutations in ORC1 and CDT1, two other genes involved in origin recognition. ORC4 is well conserved in eukaryotes, and the yeast equivalent of the human ORC4 missense mutation was shown to be pathogenic in functional assays of cell growth. This is the first report, to our knowledge, of a germline mutation in any gene of the origin recognition complex in a vertebrate organism.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Microtia Congênita , Consanguinidade , Sequência Conservada , DNA/genética , Orelha/anormalidades , Orelha/patologia , Feminino , Efeito Fundador , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Haplótipos , Humanos , Masculino , Micrognatismo/genética , Micrognatismo/patologia , Dados de Sequência Molecular , Patela/anormalidades , Patela/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos
9.
Am J Med Genet A ; 155A(1): 22-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21204207

RESUMO

Branchio-oculo-facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria. The original family with the 3.2 Mb deletion including the TFAP2A gene remains the only BOFS family without the typical CL/P and the only family with a deletion. We have identified a hotspot region in the highly conserved exons 4 and 5 of TFAP2A that harbors missense mutations in 27/30 (90%) families. Several of these mutations are recurrent. Mosaicism was detected in one family. To date, genetic heterogeneity has not been observed. Although the cardinal criteria for BOFS have been based on the presence of each of the core defects, an affected family member or thymic remnant, we documented TFAP2A mutations in three (10%) probands in our series without a classic cervical cutaneous defect or ectopic thymus. Temporal bone anomalies were identified in 3/5 patients investigated. The occurrence of CL/P, premature graying, coloboma, heterochromia irides, and ectopic thymus, are evidence for BOFS as a neurocristopathy. Intrafamilial clinical variability can be marked. Although there does not appear to be mutation-specific genotype-phenotype correlations at this time, more patients need to be studied. Clinical testing for TFAP2A mutations is now available and will assist geneticists in confirming the typical cases or excluding the diagnosis in atypical cases.


Assuntos
Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/patologia , Cromossomos Humanos Par 6/genética , Fenótipo , Fator de Transcrição AP-2/genética , Sequência de Aminoácidos , Sequência de Bases , Deleção Cromossômica , Genótipo , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...