Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Pharm Sci ; 107(4): 1112-1121, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247740

RESUMO

Many active pharmaceutical ingredients exhibit a needle-like (acicular) crystal habit, which can significantly complicate their downstream processing. In this study, the acicular crystal habit of a model active pharmaceutical ingredient, 5-aminosalicylic acid (5-ASA), was modified by addition of selected organic solvents to the typical aqueous crystallization process. 5-ASA was crystallized by a pH shift from 7.5-8 to 4 in the presence of methanol, acetonitrile, acetone, tetramethylurea, tetrahydrofuran or dimethyl sulfoxide at 25% v/v, or butanol at 9% v/v. Changes to the experimentally observed crystal habit are rationalized by considering adsorption energy calculations for the solvent molecules onto the morphologically important crystal faces. The crystal habit was influenced most significantly by organic solvents containing a good H-bond acceptor atom, particularly oxygen in acetone, tetramethylurea, tetrahydrofuran, and dimethyl sulfoxide. Such solvents have strongly stabilizing adsorption energies onto the fast-growing crystal faces, and their presence in solution thereby serves to modify the acicular habit of 5-ASA. The developed knowledge base on crystal interface-solvent interactions can form a basis for further engineering of an optimal crystal habit for 5-ASA.


Assuntos
Mesalamina/química , Solventes/química , Adsorção , Cristalização/métodos , Concentração de Íons de Hidrogênio , Oxigênio
2.
Chemistry ; 22(22): 7514-23, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27114110

RESUMO

Multimode molecular switches incorporating distinct and independently addressable functional components have potential applications as advanced switches and logic gates for molecular electronics and memory storage devices. Herein, we describe the synthesis and characterization of four switches based on the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermoswitch pair functionalized with the ruthenium-based Cp*(dppe)Ru ([Ru*]) metal complex (dppe=1,2-bis(diphenylphosphino)ethane; Cp*=pentamethylcyclopentadienyl). The [Ru*]-DHA conjugates can potentially exist in six different states accessible by alternation between DHA/VHF, Ru(II) /Ru(III) , and alkynyl/vinylidene, which can be individually stimulated by using light/heat, oxidation/reduction, and acid/base. Access to the full range of states was found to be strongly dependent on the electronic communication between the metal center and the organic photoswitch in these [Ru*]-DHA conjugates. Detailed electrochemical, spectroscopic (UV/Vis, IR, NMR), and X-ray crystallographic studies indeed reveal significant electronic interactions between the two moieties. When in direct conjugation, the ruthenium metal center was found to quench the photochemical ring-opening of DHA, which in one case could be restored by protonation or oxidation, allowing conversion to the VHF state.

3.
Org Biomol Chem ; 14(2): 425-429, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567908

RESUMO

Here, we report the first X-ray crystal structure of a tetrathiafulvalene-fused dehydroannulene with peripheral ethylthio substituents. In addition, we have subjected this compound to electrochemical and UV-Vis-NIR/ESR spectroelectrochemical studies to elucidate the degree to which the oxidised species associate.

4.
Nat Commun ; 6: 10233, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667583

RESUMO

The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor-acceptor molecules. Here we report that donor-acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor-acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor-acceptor cruciforms is tuned by small changes in the environment.

5.
Beilstein J Org Chem ; 11: 930-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124895

RESUMO

A selection of cyclic and acyclic acetylenic scaffolds bearing two tetrathiafulvalene (TTF) units was prepared by different metal-catalyzed coupling reactions. The bridge separating the two TTF units was systematically changed from linearly conjugated ethyne, butadiyne and tetraethynylethene (trans-substituted) units to a cross-conjugated tetraethynylethene unit, placed in either acyclic or cyclic arrangements. The cyclic structures correspond to so-called radiaannulenes having both endo- and exocyclic double bonds. Interactions between two redox-active TTF units in these molecules were investigated by cyclic voltammetry, UV-vis-NIR and EPR absorption spectroscopical methods of the electrochemically generated oxidized species. The electron-accepting properties of the acetylenic cores were also investigated electrochemically.

6.
J Am Chem Soc ; 136(47): 16497-507, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25375316

RESUMO

Cruciform-like molecules with two orthogonally placed π-conjugated systems have in recent years attracted significant interest for their potential use as molecular wires in molecular electronics. Here we present synthetic protocols for a large selection of cruciform molecules based on oligo(phenyleneethynylene) (OPE) and tetrathiafulvalene (TTF) scaffolds, end-capped with acetyl-protected thiolates as electrode anchoring groups. The molecules were subjected to a comprehensive study of their conducting properties as well as their photophysical and electrochemical properties in solution. The complex nature of the molecules and their possible binding in different configurations in junctions called for different techniques of conductance measurements: (1) conducting-probe atomic force microscopy (CP-AFM) measurements on self-assembled monolayers (SAMs), (2) mechanically controlled break-junction (MCBJ) measurements, and (3) scanning tunneling microscopy break-junction (STM-BJ) measurements. The CP-AFM measurements showed structure-property relationships from SAMs of series of OPE3 and OPE5 cruciform molecules; the conductance of the SAM increased with the number of dithiafulvene (DTF) units (0, 1, 2) along the wire, and it increased when substituting two arylethynyl end groups of the OPE3 backbone with two DTF units. The MCBJ and STM-BJ studies on single molecules both showed that DTFs decreased the junction formation probability, but, in contrast, no significant influence on the single-molecule conductance was observed. We suggest that the origins of the difference between SAM and single-molecule measurements lie in the nature of the molecule-electrode interface as well as in effects arising from molecular packing in the SAMs. This comprehensive study shows that for complex molecules care should be taken when directly comparing single-molecule measurements and measurements of SAMs and solid-state devices thereof.

7.
Org Lett ; 16(14): 3736-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25007357

RESUMO

Stable bis(gold(I) alkynyl) complexes of tetraethynylethene (TEE) derivatives were readily prepared and employed in Sonogashira-like palladium-catalyzed phosphine-gold(I) halide elimination reactions with aryl iodides and redox-active tetrathiafulvalene (TTF) mono- and bisiodides. This presents a particularly convenient method for the preparation of symmetrical and asymmetrical tetrathiafulvalene (TTF)-fused radiaannulenes in good yields.

8.
Beilstein J Org Chem ; 8: 958-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23015846

RESUMO

BACKGROUND: The dihydroazulene (DHA)/vinylheptafulvene (VHF) system (with two cyano groups at C1) functions as a photo-/thermoswitch. Direct ionic bromination of DHA has previously furnished a regioselective route to a 7,8-dibromide, which by elimination was converted to a 7-bromo-substituted DHA. This compound has served as a central building block for functionalization of the DHA by palladium-catalyzed cross-coupling reactions. The current work explores another bromination protocol for achieving the isomeric 3-bromo-DHA and also explores the outcome of additional bromination of this compound as well as of the known 7-bromo-DHA. RESULTS: Radical bromination on two different VHFs by using N-bromosuccinimide/benzoyl peroxide and light, followed by a ring-closure reaction generated the corresponding 3-bromo-DHAs, as confirmed in one case by X-ray crystallography. According to a (1)H NMR spectroscopic study, the ring closure of the brominated VHF seemed to occur readily under the reaction conditions. A subsequent bromination-elimination protocol provided a 3,7-dibromo-DHA. In contrast, treating the known 7-bromo-DHA with bromine generated a very labile species that was converted to a new 3,7-dibromoazulene, i.e., the fully unsaturated species. Azulenes were also found to form from brominated compounds when left standing for a long time in the solid state. Kinetics measurements reveal that the 3-bromo substituent enhances the rate of the thermal conversion of the VHF to DHA, which is opposite to the effect exerted by a bromo substituent in the seven-membered ring. CONCLUSION: Two general procedures for functionalizing the DHA core with a bromo substituent (at positions 3 and 7, respectively) are now available with the DHA as starting material.

9.
Dalton Trans ; (1): 33-6, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19081968

RESUMO

Reactions of Group 8 metal ethynyls with tetracyanoethene afford tricyanovinylethynyl-metal derivatives, M{C[triple bond]CC(CN)=C(CN)(2)}(PP)Cp' [2; M = Ru, Os; PP = (PPh(3))(2), dppe; Cp' = Cp, Cp*; not all combinations]; a similar reaction occurs with the vinylidene RuCl(=C=CHPh)(PPh(3))Cp. Further replacement of a CN group in occurs with nucleophiles, while homo- and hetero-metallic derivatives are obtained by coordination of one of the remaining CN groups to other metal-ligand fragments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...