Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 46(2): 452-463, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27910987

RESUMO

The chemical evolution of extraterrestrial environments leads to the formation of polycyclic aromatic hydrocarbons (PAHs) via gas phase radical mediated aromatization reactions. We review that these de facto barrierless reactions are capable of forming prebiotic molecules such as nitrogen substituted PAHs (NPAHs), which represent the missing link between nitrogen bearing acyclic molecules and prebiotic nucleobases along with vitamins found in meteorites. Crucial routes leading to the incorporation of nitrogen atoms into the aromatic ring have been exposed. Pyridine can be formed from the reaction of abundant vinyl cyanide and its radical or via cyano radicals reacting with 1,3-butadiene. The NPAHs 1,4-dihydro(iso)quinoline and (iso)quinoline can be synthesized through reaction of pyridyl radicals with 1,3-butadiene or sequentially with two acetylene molecules, respectively. The inclusion of nitrogen into an aromatic system and their growth can fill the mechanistic gaps missing leading from acyclic nitrogen-bearing molecules via pyridine to NPAH-type molecules in the interstellar medium.

2.
Phys Chem Chem Phys ; 17(47): 32000-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26569517

RESUMO

Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block - the aromatic pyridine molecule - has remained elusive for decades. Here we reveal a potential pathway to a facile pyridine (C5H5N) synthesis via the reaction of the cyano vinyl (C2H2CN) radical with vinyl cyanide (C2H3CN) in high temperature environments simulating conditions in carbon-rich circumstellar envelopes of Asymptotic Giant Branch (AGB) stars like IRC+10216. Since this reaction is barrier-less, pyridine can also be synthesized via this bimolecular reaction in cold molecular clouds such as in TMC-1. The synchronized aromatization of precursors readily available in the interstellar medium leading to nitrogen incorporation into the aromatic rings would open up a novel route to pyridine derivatives such as vitamin B3 and pyrimidine bases as detected in carbonaceous chondrites like Murchison.

3.
Chemphyschem ; 16(10): 2091-3, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25917234

RESUMO

The combustion of fossil fuels forms polycyclic aromatic hydrocarbons (PAHs) composed of five- and six- membered aromatic rings, such as indene (C9 H8 ), which are carcinogenic, mutagenic, and deleterious to the environment. Indene, the simplest PAH with single five- and six-membered rings, has been predicted theoretically to be formed through the reaction of benzyl radicals with acetylene. Benzyl radicals are found in significant concentrations in combustion flames, owing to their highly stable aromatic and resonantly stabilized free-radical character. We provide compelling experimental evidence that indene is synthesized through the reaction of the benzyl radical (C7 H7 ) with acetylene (C2 H2 ) under combustion-like conditions at 600 K. The mechanism involves an initial addition step followed by cyclization and aromatization through atomic hydrogen loss. This reaction was found to form the indene isomer exclusively, which, in conjunction with the high concentrations of benzyl and acetylene in combustion environments, indicates that this pathway is the predominant route to synthesize the prototypical five- and six-membered PAH.

4.
Phys Chem Chem Phys ; 17(16): 10510-9, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25806373

RESUMO

The reactions of the p-tolyl radical with allene-d4 and methylacetylene-d4 as well as of the p-tolyl-d7 radical with methylacetylene-d1 and methylacetylene-d3 were carried out under single collision conditions at collision energies of 44-48 kJ mol(-1) and combined with electronic structure and statistical (RRKM) calculations. Our experimental results indicated that the reactions of p-tolyl with allene-d4 and methylacetylene-d4 proceeded via indirect reaction dynamics with laboratory angular distributions spanning about 20° in the scattering plane. As a result, the center-of-mass translational energy distribution determined a reaction exoergicity of 149 ± 28 kJ mol(-1) and exhibited a pronounced maximum at around 20 to 30 kJ mol(-1). In addition, the center-of-mass angular flux distribution T(θ) depicted a forward-backward symmetry and indicated geometric constraints upon the decomposing complex(es). Combining with calculations, these results propose that the bicyclic polycyclic aromatic hydrocarbons, 6-methyl-1H-indene (p1) and 5-methyl-1H-indene (p2), are formed under single collision conditions at fractions of at least 85% in both reaction systems. For the p-tolyl-methylacetylene system, experiments with partially deuterated reactants also reveal the formation of a third isomer p5 (1-methyl-4-(1-propynyl)benzene) at levels of 5-10%, highlighting the importance in conducting reactions with partially deuterated reactants to elucidate the underlying reaction pathways comprehensively.

5.
Angew Chem Int Ed Engl ; 54(18): 5421-4, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25752687

RESUMO

The hydrogen abstraction/acetylene addition (HACA) mechanism has long been viewed as a key route to aromatic ring growth of polycyclic aromatic hydrocarbons (PAHs) in combustion systems. However, doubt has been drawn on the ubiquity of the mechanism by recent electronic structure calculations which predict that the HACA mechanism starting from the naphthyl radical preferentially forms acenaphthylene, thereby blocking cyclization to a third six-membered ring. Here, by probing the products formed in the reaction of 1- and 2-naphthyl radicals in excess acetylene under combustion-like conditions with the help of photoionization mass spectrometry, we provide experimental evidence that this reaction produces 1- and 2-ethynylnaphthalenes (C12 H8 ), acenaphthylene (C12 H8 ) and diethynylnaphthalenes (C14 H8 ). Importantly, neither phenanthrene nor anthracene (C14 H10 ) was found, which indicates that the HACA mechanism does not lead to cyclization of the third aromatic ring as expected but rather undergoes ethynyl substitution reactions instead.

6.
Phys Chem Chem Phys ; 17(12): 7699-706, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25712616

RESUMO

The crossed molecular beam reactions of the meta-tolyl radical with 1,3-butadiene and D6-1,3-butadiene were conducted at collision energies of 48.5 kJ mol(-1) and 51.7 kJ mol(-1). The reaction dynamics propose a complex-forming reaction mechanism via addition of the meta-tolyl radical with its radical center either to the C1 or C2 carbon atom of the 1,3-butadiene reactant forming two distinct intermediates, which are connected via migration of the meta-tolyl group. Considering addition to C1 proceeds by formation of a van-der-Waals complex below the energy of the separated reactants, we propose that in cold molecular clouds holding temperatures as low as 10 K, the reaction of the meta-tolyl radical with 1,3-butadiene is de-facto barrier less. At elevated temperatures such as in combustion processes, the reaction can also proceed via addition to C2 by overcoming the entrance barrier to addition (11 kJ mol(-1)). Eventually, the resonantly stabilized free radical intermediate C11H13 undergoes isomerization to a cis form, followed by rearrangement through two distinct ring closures at the para- and ortho-position of tolyl radical to yield cyclic intermediates. These intermediates then emit a hydrogen atom forming 6- and 5-methyl-1,4-dihydronaphthalene via tight exit transition states. The steady state branching ratio, 70.0% and 29.2%, at the collision energy of 51.7 kJ mol(-1), of 6- and 5-methyl-1,4-dihydronaphthalene, respectively, is determined mainly by the rates of reverse ring opening of cyclic intermediates. The formation of the thermodynamically less stable 1-meta-tolyl-trans-1,3-butadiene was found to be a less important pathway (0.8%). The reaction of the meta-tolyl radical with 1,3-butadiene leads without entrance barrier to two methyl substituted PAH derivatives holding 1,4-dihydronapthalene cores: 5- and 6-methyl-1,4-dihydronaphthalene thus providing a barrierless route to odd-numbered PAH derivatives under single collision conditions.


Assuntos
Butadienos/química , Naftalenos/química , Tolueno/química , Radicais Livres/química , Isomerismo , Naftalenos/síntese química , Temperatura , Termodinâmica
7.
J Phys Chem A ; 119(7): 1094-107, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25626151

RESUMO

The reactions of the boron monoxide ((11)BO; X(2)Σ(+)) radical with 1,3-butadiene (CH2CHCHCH2; X(1)Ag) and its partially deuterated counterparts, 1,3-butadiene-d2 (CH2CDCDCH2; X(1)Ag) and 1,3-butadiene-d4 (CD2CHCHCD2; X(1)Ag), were investigated under single collision conditions exploiting a crossed molecular beams machine. The experimental data were combined with the state-of-the-art ab initio electronic structure calculations and statistical RRKM calculations to investigate the underlying chemical reaction dynamics and reaction mechanisms computationally. Our investigations revealed that the reaction followed indirect scattering dynamics through the formation of (11)BOC4H6 doublet radical intermediates via the barrierless addition of the (11)BO radical to the terminal carbon atom (C1/C4) and/or the central carbon atom (C2/C3) of 1,3-butadiene. The resulting long-lived (11)BOC4H6 intermediate(s) underwent isomerization and/or unimolecular decomposition involving eventually at least two distinct atomic hydrogen loss pathways to 1,3-butadienyl-1-oxoboranes (CH2CHCHCH(11)BO) and 1,3-butadienyl-2-oxoboranes (CH2C ((11)BO)CHCH2) in overall exoergic reactions via tight exit transition states. Utilizing partially deuterated 1,3-butadiene-d2 and -d4, we revealed that the hydrogen loss from the methylene moiety (CH2) dominated with 70 ± 10% compared to an atomic hydrogen loss from the methylidyne group (CH) of only 30 ± 10%; these data agree nicely with the theoretically predicted branching ratio of 80% versus 19%.

8.
Phys Chem Chem Phys ; 17(1): 530-40, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406399

RESUMO

Crossed molecular beam reactions were exploited to elucidate the chemical dynamics of the reactions of phenyl radicals with isoprene and with 1,3-pentadiene at a collision energy of 55 ± 4 kJ mol(-1). Both reactions were found to proceed via indirect scattering dynamics and involve the formation of a van-der-Waals complex in the entrance channel. The latter isomerized via the addition of the phenyl radical to the terminal C1/C4 carbon atoms through submerged barriers forming resonantly stabilized free radicals C11H13, which then underwent cis-trans isomerization followed by ring closure. The resulting bicyclic intermediates fragmented via unimolecular decomposition though the atomic hydrogen loss via tight exit transition states located 30 kJ mol(-1) above the separated reactants in overall exoergic reactions forming 2- and 1-methyl-1,4-dihydronaphthalene isomers. The hydrogen atoms are emitted almost perpendicularly to the plane of the decomposing complex and almost parallel to the total angular momentum vector ('sideways scattering') which is in strong analogy to the phenyl-1,3-butadiene system studied earlier. RRKM calculations confirm that 2- and 1-methyl-1,4-dihydronaphthalene are the dominating reaction products formed at levels of 97% and 80% in the reactions of the phenyl radical with isoprene and 1,3-pentadiene, respectively. This barrier-less formation of methyl-substituted, hydrogenated PAH molecules further supports our understanding of the formation of aromatic molecules in extreme environments holding temperatures as low as 10 K.


Assuntos
Alcadienos/química , Butadienos/química , Hemiterpenos/química , Naftalenos/química , Pentanos/química , Radicais Livres/química , Isomerismo , Modelos Moleculares
9.
J Phys Chem A ; 119(28): 7145-54, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25354358

RESUMO

The reaction of the phenyl radical (C6H5) with molecular oxygen (O2) plays a central role in the degradation of poly- and monocyclic aromatic radicals in combustion systems which would otherwise react with fuel components to form polycyclic aromatic hydrocarbons (PAHs) and eventually soot. Despite intense theoretical and experimental scrutiny over half a century, the overall reaction channels have not all been experimentally identified. Tunable vacuum ultraviolet photoionization in conjunction with a combustion simulating chemical reactor uniquely provides the complete isomer specific product spectrum and branching ratios of this prototype reaction. In the reaction of phenyl radicals and molecular oxygen at 873 K and 1003 K, ortho-benzoquinone (o-C6H4O2), the phenoxy radical (C6H5O), and cyclopentadienyl radical (C5H5) were identified as primary products formed through emission of atomic hydrogen, atomic oxygen and carbon dioxide. Furan (C4H4O), acrolein (C3H4O), and ketene (C2H2O) were also identified as primary products formed through ring opening and fragmentation of the 7-membered ring 2-oxepinoxy radical. Secondary reaction products para-benzoquinone (p-C6H4O2), phenol (C6H5OH), cyclopentadiene (C5H6), 2,4-cyclopentadienone (C5H4O), vinylacetylene (C4H4), and acetylene (C2H2) were also identified. The pyranyl radical (C5H5O) was not detected; however, electronic structure calculations show that it is formed and isomerizes to 2,4-cyclopentadienone through atomic hydrogen emission. In combustion systems, barrierless phenyl-type radical oxidation reactions could even degrade more complex aromatic radicals. An understanding of these elementary processes is expected to lead to a better understanding toward the elimination of carcinogenic, mutagenic, and environmentally hazardous byproducts of combustion systems such as PAHs.

10.
Annu Rev Phys Chem ; 66: 43-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25422849

RESUMO

Bimolecular reactions of phenyl-type radicals with the C4 and C5 hydrocarbons vinylacetylene and (methyl-substituted) 1,3-butadiene have been found to synthesize polycyclic aromatic hydrocarbons (PAHs) with naphthalene and 1,4-dihydronaphthalene cores in exoergic and entrance barrierless reactions under single-collision conditions. The reaction mechanism involves the initial formation of a van der Waals complex and addition of a phenyl-type radical to the C1 position of a vinyl-type group through a submerged barrier. Investigations suggest that in the hydrocarbon reactant, the vinyl-type group must be in conjugation with a -C≡CH or -HC=CH2 group to form a resonantly stabilized free radical intermediate, which eventually isomerizes to a cyclic intermediate followed by hydrogen loss and aromatization (PAH formation). The vinylacetylene-mediated formation of PAHs might be expanded to more complex PAHs, such as anthracene and phenanthrene, in cold molecular clouds via barrierless reactions involving phenyl-type radicals, such as naphthyl, which cannot be accounted for by the classical hydrogen abstraction-acetylene addition mechanism.

11.
J Phys Chem A ; 118(51): 12111-9, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25407848

RESUMO

Crossed molecular beam reactions of p-tolyl (C7H7) plus 1,3-butadiene (C4H6), p-tolyl (C7H7) plus 1,3-butadiene-d6 (C4D6), and p-tolyl-d7 (C7D7) plus 1,3-butadiene (C4H6) were carried out under single-collision conditions at collision energies of about 55 kJ mol(-1). 6-Methyl-1,4-dihydronaphthalene was identified as the major reaction product formed at fractions of about 94% with the monocyclic isomer (trans-1-p-tolyl-1,3-butadiene) contributing only about 6%. The reaction is initiated by barrierless addition of the p-tolyl radical to the terminal carbon atom of the 1,3-butadiene via a van der Waals complex. The collision complex isomerizes via cyclization to a bicyclic intermediate, which then ejects a hydrogen atom from the bridging carbon to form 6-methyl-1,4-dihydronaphthalene through a tight exit transition state located about 27 kJ mol(-1) above the separated products. This is the dominant channel under the present experimental conditions. Alternatively, the collision complex can also undergo hydrogen ejection to form trans-1-p-tolyl-1,3-butadiene; this is a minor contributor to the present experiment. The de facto barrierless formation of a methyl-substituted aromatic hydrocarbons by dehydrogenation via a single event represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated analogues in combustion flames and the interstellar medium.


Assuntos
Butadienos/química , Naftalenos/química , Tolueno/química , Ciclização , Radicais Livres/química , Isomerismo , Cinética , Teoria Quântica
12.
J Phys Chem A ; 118(41): 9632-45, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25238644

RESUMO

The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

13.
J Phys Chem A ; 118(32): 6181-90, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25084134

RESUMO

The reactions of the 4-tolyl radical (C6H4CH3) and of the D7-4-tolyl radical (C6D4CD3) with 1,2-butadiene (C4H6) have been probed in crossed molecular beams under single collision conditions at a collision energy of about 54 kJ mol(-1) and studied theoretically using ab initio G3(MP2,CC)//B3LYP/6-311G** and statistical RRKM calculations. The results show that the reaction proceeds via indirect scattering dynamics through the formation of a van-der-Waals complex followed by the addition of the radical center of the 4-tolyl radical to the C1 or C3 carbon atoms of 1,2-butadiene. The collision complexes then isomerize by migration of the tolyl group from the C1 (C3) to the C2 carbon atom of the 1,2-butadiene moiety. The resulting intermediate undergoes unimolecular decomposition via elimination of a hydrogen atom from the methyl group of the 1,2-butadiene moiety through a rather loose exit transition state leading to 2-para-tolyl-1,3-butadiene (p4), which likely presents the major reaction product. Our observation combined with theoretical calculations suggest that one methyl group (at the phenyl group) acts as a spectator in the reaction, whereas the other one (at the allene moiety) is actively engaged in the underlying chemical dynamics. On the contrary to the reaction of the phenyl radical with allene, which leads to the formation of indene, the substitution of a hydrogen atom by a methyl group in allene essentially eliminates the formation of bicyclic PAHs such as substituted indenes in the 4-tolyl plus 1,2-butadiene reaction.

14.
Phys Chem Chem Phys ; 16(33): 17580-7, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25026168

RESUMO

We exploited crossed molecular beams techniques and electronic structure calculations to provide compelling evidence that the vinylsulfidoboron molecule (C2H3(11)B(32)S) - the simplest member of hitherto elusive olefinic organo-sulfidoboron molecules (RBS) - can be formed via the gas phase reaction of boron monosulfide ((11)B(32)S) with ethylene (C2H4) under single collision conditions. The reaction mechanism follows indirect scattering dynamics via a barrierless addition of the boron monosulfide radical to the carbon-carbon double bond of ethylene. The initial reaction complex can either decompose to vinylsulfidoboron (C2H3(11)B(32)S) via the emission of a hydrogen atom from the sp(3) hybridized carbon atom, or isomerize via a 1,2-hydrogen shift prior to a hydrogen loss from the terminal carbon atom to form vinylsulfidoboron. Statistical (RRKM) calculations predict branching ratios of 8% and 92% for both pathways leading to vinylsulfidoboron, respectively. A comparison between the boron monosulfide ((11)B(32)S) plus ethylene and the boron monoxide ((11)BO) plus ethylene systems indicates that both reactions follow similar reaction mechanisms involving addition - elimination and addition - hydrogen migration - elimination pathways. Our experimental findings open up a novel pathway to access the previously poorly-characterized class of organo-sulfidoboron molecules via bimolecular gas phase reactions, which are difficult to form through 'classical' organic synthesis.

15.
Angew Chem Int Ed Engl ; 53(30): 7740-4, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24953850

RESUMO

For almost half a century, polycyclic aromatic hydrocarbons (PAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium (ISM) and in the chemistry of combustion systems. However, even the most fundamental reaction mechanism assumed to lead to the simplest PAH naphthalene--the hydrogen abstraction-acetylene addition (HACA) mechanism--has eluded experimental observation. Here, by probing the phenylacetylene (C8 H6 ) intermediate together with naphthalene (C10 H8 ) under combustion-like conditions by photo-ionization mass spectrometry, the very first direct experimental evidence for the validity of the HACA mechanism which so far had only been speculated theoretically is reported.

16.
J Phys Chem A ; 118(25): 4372-81, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24884962

RESUMO

We explored the reactions on the phenyl (C6H5; X(2)A1) and phenyl-d5 (C6D5; X(2)A1) radical with 1,2-butadiene (C4H6; X(1)A') at a collision energy of about 52 ± 3 kJ mol(-1) in a crossed molecular beam apparatus. The reaction of phenyl with 1,2-butadiene is initiated by adding the phenyl radical with its radical center to the π electron density at the C1/C3 carbon atom of 1,2-butadiene. Later, the initial collision complexes isomerize via phenyl group migration from the C1/C3 carbon atoms to the C2 carbon atom of the allene moiety of 1,2-butadiene. The resulting intermediate undergoes unimolecular decomposition through hydrogen atom emission from the methyl group of the 1,2-butadiene moiety via a rather loose exit transition state leading to 2-phenyl-1,3-butadiene in an overall exoergic reaction (ΔRG = -72 ± 10 kJ mol(-1)). This finding reveals the strong collision-energy dependence of this system when the data are compared with those of the phenyl radical with 1,2-butadiene previously recorded at collision energies up to 160 kJ mol(-1), with the previous study exhibiting the thermodynamically less stable 1-phenyl-3-methylallene (ΔRG = -33 ± 10 kJ mol(-1)) and 1-phenyl-2-butyne (ΔRG = -24 ± 10 kJ mol(-1)) to be the dominant products.

17.
J Phys Chem A ; 118(21): 3810-3819, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24806514

RESUMO

The gas phase reaction between the boron monoxide radical (11BO; X2Σ+) and allene (H2CCCH2; X1A1) was investigated experimentally under single collision conditions using the crossed molecular beam technique and theoretically exploiting ab initio electronic structure and statistical (RRKM) calculations. The reaction was found to follow indirect (complex forming) scattering dynamics and proceeded via the formation of a van der Waals complex (11BOC3H4). This complex isomerized via addition of the boron monoxide radical (11BO; X2Σ+) with the radical center located at the boron atom to the terminal carbon atom of the allene molecule forming a H2CCCH211BO intermediate on the doublet surface. The chemically activated H2CCCH211BO intermediate underwent unimolecular decomposition via atomic hydrogen elimination from the terminal carbon atom holding the boronyl group through a tight exit transition state to synthesize the boronylallene product (H2CCCH11BO) in a slightly exoergic reaction (55 ± 11 kJ mol-1). Statistical (RRKM) calculations suggest that minor reaction channels lead to the products 3-propynyloxoborane (CH2(11BO)CCH) and 1-propynyloxoborane (CH3CC11BO) with fractions of 1.5% and 0.2%, respectively. The title reaction was also compared with the cyano (CN; X2Σ+)-allene and boronyl-methylacetylene reactions to probe similarities, but also differences of these isoelectronic systems. Our investigation presents a novel gas phase synthesis and characterization of a hitherto elusive organyloxoborane (RBO) monomer-boronylallene-which is inherently tricky to isolate in the condensed phase except in matrix studies; our work further demonstrates that the crossed molecular beams approach presents a useful tool in investigating the chemistry and synthesis of highly reactive organyloxoboranes.

18.
Phys Chem Chem Phys ; 16(24): 12150-63, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24829078

RESUMO

The reaction dynamics of the dicarbon radical C2(a(3)Πu/X(1)Σg(+)) in the singlet and triplet state with C4H6 isomers 2-butyne, 1-butyne and 1,2-butadiene were investigated at collision energies of about 26 kJ mol(-1) using the crossed molecular beam technique and supported by ab initio and RRKM calculations. The reactions are all indirect, forming C6H6 complexes through barrierless additions by dicarbon on the triplet and singlet surfaces. Isomerization of the C6H6 reaction intermediate leads to product formation by hydrogen loss in a dicarbon-hydrogen atom exchange mechanism forming acyclic C6H5 reaction products through loose exit transition states in overall exoergic reactions.

19.
J Am Chem Soc ; 136(23): 8387-92, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24842647

RESUMO

As a member of the organo sulfidoboron (RBS) family, the hitherto elusive ethynylsulfidoboron molecule (HCCBS) has been formed via the bimolecular reaction of the boron monosulfide radical (BS) with acetylene (C2H2) under single collision conditions in the gas phase, exploiting the crossed molecular beams technique. The reaction mechanism follows indirect dynamics via a barrierless addition of the boron monosulfide radical with its boron atom to the carbon atom of the acetylene molecule, leading to the trans-HCCHBS intermediate. As predicted by ab initio electronic structure calculations, the initial collision complex either isomerizes to its cis-form or undergoes a hydrogen atom migration to form H2CCBS. The cis-HCCHBS intermediate either isomerizes via hydrogen atom shift from the carbon to the boron atom, leading to the HCCBHS isomer, or decomposes to ethynylsulfidoboron (HCCBS). Both H2CCBS and HCCBHS intermediates were predicted to fragment to ethynylsulfidoboron via atomic hydrogen losses. Statistical (RRKM) calculations report yields to form the ethynylsulfidoboron molecule from cis-HCCHBS, H2CCBS, and HCCBHS to be 21%, 7%, and 72%, respectively, under current experimental conditions. Our findings open up an unconventional path to access the previously obscure class of organo sulfidoboron molecules, which are difficult to access through "classical" formation.

20.
J Phys Chem A ; 118(15): 2709-18, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24646186

RESUMO

We present for the very first time single collision experimental evidence that a methyl-substituted polycyclic aromatic hydrocarbon (PAH)-2-methylnaphthalene-can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the para-tolyl radical and vinylacetylene. Theory shows that this reaction is initiated by the addition of the para-tolyl radical to either the terminal acetylene carbon (C(4)) or a vinyl carbon (C(1)) leading eventually to two distinct radical intermediates. Importantly, addition at C(1) was found to be barrierless via a van der Waals complex implying this mechanism can play a key role in forming methyl substituted PAHs in low temperature extreme environments such as the interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer Solar System. Both reaction pathways involve a sequence of isomerizations via hydrogen transfer, ring closure, ring-opening and final hydrogen dissociation through tight exit transition states to form 2-methylnaphthalene in an overall exoergic process. Less favorable pathways leading to monocyclic products are also found. Our studies predict that reactions of substituted aromatic radicals can mechanistically deliver odd-numbered PAHs which are formed in significant quantities in the combustion of fossil fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...