Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(2): 3186-3198, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33398989

RESUMO

Mesoscaled assemblies are organized in native collagen tissues to achieve remarkable and diverse performance and functions. In this work, a facile, low-cost, and controllable liquid exfoliation method was applied to directly extract these collagen mesostructures from bovine Achilles tendons using a sodium hydroxide (NaOH)/urea aqueous system with freeze-thaw cycles and sonication. A series of collagen fibrils with diameters of 26-230 nm were harvested using this process, and in situ observations under polarizing microscopy (POM) and using molecular dynamics simulations revealed the influence of the NaOH/urea system on the tendon collagen. FTIR and XRD results confirmed that these collagen fibrils preserved typical structural characteristics of type I collagen. These isolated collagen fibrils were then utilized as building blocks to fabricate free-standing collagen membranes, which exhibited good stability in solvents and outstanding mechanical properties and transparency, with potential for utility in optical and electronic sensors. Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.


Assuntos
Tendão do Calcâneo/química , Materiais Biocompatíveis/química , Colágeno/química , Membranas Artificiais , Animais , Bovinos , Linhagem Celular , Colágeno/ultraestrutura , Feminino , Congelamento , Camundongos , Ratos Sprague-Dawley , Hidróxido de Sódio/química , Sonicação , Resistência à Tração , Ureia/química
2.
Adv Drug Deliv Rev ; 160: 186-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33080258

RESUMO

Advances in medical science have led to diverse new therapeutic modalities, as well as enhanced understanding of the progression of various disease states. These findings facilitate the design and development of more customized and exquisite drug delivery systems that aim to improve therapeutic indices of drugs to treat a variety of conditions. Synthetic polymer-based drug carriers have often been the focus of such research. However, these structures suffer from challenges with heterogeneity of the starting material, limited chemical features, complex functionalization methods, and in some cases a lack of biocompatibility. Consequently, protein-based polymers have garnered much attention in recent years due to their monodisperse features, ease of production and functionalization, and biocompatibility. Genetic engineering techniques enable the advancement of protein-based drug delivery systems with finely tuned physicochemical properties, and thus an expanded level of customization unavailable with synthetic polymers. Of these genetically engineered proteins, elastin-like proteins (ELP), silk-like proteins (SLP), and silk-elastin-like proteins (SELP) provide a unique set of alternatives for designing drug delivery systems due to their inherent chemical and physical properties and ease of engineering afforded by recombinant DNA technologies. In this review we examine the advantages of genetically engineered drug delivery systems with emphasis on ELP and SLP constructions. Methods for fabrication and relevant biomedical applications will also be discussed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Elastina/química , Engenharia de Proteínas/métodos , Seda/química , Materiais Biocompatíveis/química , Técnicas de Transferência de Genes , Humanos , Hidrogéis/química , Nanopartículas , Tamanho da Partícula , Proteínas Recombinantes/química
3.
Sci Adv ; 6(19): eaay8828, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494701

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive decline, memory loss, and inability to perform everyday functions. Hallmark features of AD-including generation of amyloid plaques, neurofibrillary tangles, gliosis, and inflammation in the brain-are well defined; however, the cause of the disease remains elusive. Growing evidence implicates pathogens in AD development, with herpes simplex virus type I (HSV-1) gaining increasing attention as a potential causative agent. Here, we describe a multidisciplinary approach to produce physiologically relevant human tissues to study AD using human-induced neural stem cells (hiNSCs) and HSV-1 infection in a 3D bioengineered brain model. We report a herpes-induced tissue model of AD that mimics human disease with multicellular amyloid plaque-like formations, gliosis, neuroinflammation, and decreased functionality, completely in the absence of any exogenous mediators of AD. This model will allow for future studies to identify potential downstream drug targets for treating this devastating disease.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Gliose/complicações , Herpesvirus Humano 1/fisiologia , Humanos , Placa Amiloide
4.
Biomed Mater ; 15(6): 065006, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32485704

RESUMO

Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.


Assuntos
Biopolímeros/química , Regeneração Óssea , Cabelo/metabolismo , Queratinas Específicas do Cabelo/química , Proteínas Recombinantes/química , Engenharia Tecidual/métodos , Actinas/metabolismo , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular , Cromatografia , Escherichia coli , Fibroblastos/metabolismo , Humanos , Queratinas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Músculo Liso/metabolismo , Medicina Regenerativa/métodos , Silanos/química , Pele/patologia , Cicatrização/efeitos dos fármacos
5.
Adv Healthc Mater ; 9(11): e2000266, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32338463

RESUMO

Three-dimensional organoid tissue culture models are a promising approach for the study of biological processes including diseases. Advances in these tissue culture technologies improve in vitro analysis compared to standard 2D cellular approaches and are more representative of the physiological environment. However, a major challenge associated with organoid systems stems from the laborious processing involved in the analysis of large numbers of organoids. Here the design, characterization, and application of silk-elastin-like protein-based smart carrier arrays for processing organoids is presented. Fabrication of hydrogel-based carrier systems at room temperature result in organized arrays of organoids that maintain tissue culture plate orientation and could be processed simultaneously for histology. The system works by transfer of the organoids to the hydrogel arrays after which the material is subjected to 65 °C to induce hydrogel contraction to secure the organoids, resulting in multisample constructs and allowing for placement on a microscope slide. Histological processing and immunostaining of these arrayed cerebral organoids analyzed within the contracted silk-elastin-like proteins (SELP) show retention of native organoid features compared to controls without the hydrogel carrier system, thus avoiding any artifacts. These SELP carriers present a useful approach for improving efficiency of scaled organoid screening and processing.


Assuntos
Fenômenos Biológicos , Materiais Inteligentes , Elastina , Hidrogéis , Organoides , Seda
6.
ACS Appl Bio Mater ; 3(4): 2466-2472, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025296

RESUMO

Sustained, local delivery of the antibiotic ciprofloxacin under different formats from porous silk protein-based memory foam systems was studied. Similarly, protease XIV was incorporated during processing to provide control of the degradation kinetics of the silk materials. In vitro antibiotic release studies combined with degradation assessments were utilized to assess the mechanisms and kinetics of release from the silk materials. The sequestered protease XIV affected the degradation profiles of the silk foams yet did not impact the release kinetics of the ciprofloxacin, which was controlled by solubility and diffusion of the drug. The ability to tune the release of ciprofloxacin between 1 and 200 days, combined with the option to modulate the degradation rate up to 80% in 2 weeks via incorporation of a protease, suggests utility for drug release devices. Further, we anticipate that this approach could also be extended to other medical implant needs and other drugs.

7.
J Funct Biomater ; 10(4)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726786

RESUMO

Transmucosal drug delivery is a promising avenue to improve therapeutic efficacy through localized therapeutic administration. Drug delivery systems that increase retention in the mucosal layer are needed to improve efficiency of such transmucosal platforms. However, the applicability of such systems is often limited by the range of chemistries and properties that can be achieved. Here we present the design and implementation of silk-elastin-like proteins (SELPs) with mucoadhesive properties. SELP-based micellar-like nanoparticles provide a system to tailor chemical and physical properties through genetic engineering of the SELP sequence, which enables the fabrication of nanoparticles with specific chemical and physical features. Analysis of the adhesion of four different SELP-based nanoparticle systems in an artificial mucus system, as well as in in vitro cellular assays indicates that addition of mucoadhesive chemical features on the SELP systems increases retention of the particles in mucosal environments. The results indicated that SELP-based nanoparticles provide a useful approach to study and develop transmucosal protein drug delivery system with unique mucoadhesive properties. Future studies will serve to further expand the range of achievable properties, as well as the utilization of SELPs to fabricate mucoadhesive materials for in vivo testing.

8.
Curr Protoc Toxicol ; 81(1): e84, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31529796

RESUMO

The cornea provides a functional barrier separating the outside environment from the intraocular environment, thereby protecting posterior segments of the eye from infection and damage. Pathological changes that compromise the structure or integrity of the cornea may occur as a result of injury or disease and can lead to debilitating effects on visual acuity. Over 10 million people worldwide are visually impaired or blind due to corneal opacity. Thus, physiologically relevant in vitro approaches to predict corneal toxicity of chemicals or effective treatments for disease prior to ocular exposure, as well as to study the corneal effects of systemic, chronic conditions, such as diabetes, are needed to reduce use of animal testing and accelerate therapeutic development. We have previously bioengineered an innervated corneal tissue model using silk protein scaffolds to recapitulate the structural and mechanical elements of the anterior cornea and to model the functional aspects of corneal sensation with the inclusion of epithelial, stromal, and neural components. The purpose of this unit is to provide a step-by-step guide for preparation, assembly, and application of this three-dimensional corneal tissue system to enable the study of corneal tissue biology. © 2019 by John Wiley & Sons, Inc.


Assuntos
Córnea , Seda , Técnicas de Cultura de Tecidos/instrumentação , Alicerces Teciduais , Alternativas aos Testes com Animais , Dimetilpolisiloxanos , Humanos , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual/métodos , Testes de Toxicidade
9.
J Funct Biomater ; 10(3)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540233

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) infections may lead to severe damage of the cornea, mucosa, and skin. The highly aggressive nature of P. aeruginosa and the rise in multi-drug resistance, particularly in nosocomial settings, lead to an increased risk for permanent tissue damage and potentially death. Thus, a growing need exists to develop alternative treatments to reduce both the occurrence of bacterial infection and biofilm development, as well as pathological progression post-infection. Silk derived from Bombyx mori silkworms serves as a unique biomaterial that is biocompatible with low immunogenicity and high versatility, and thereby ideal for stabilizing therapeutics. In this study, we assessed the cytotoxicity of P. aeruginosa on human corneal stromal stem cells and two mucosal cell lines (Caco-2 and HT29-MTX). To determine whether antibiotic-immobilized scaffolds can serve as alternative therapeutics to free, diffuse forms, we developed novel gentamicin-conjugated silk films as functional scaffolds and compared antimicrobial effects and free gentamicin. The advantages of generating a surface coating with a covalently-bound antibiotic may reduce potential side-effects associated with free gentamicin, as well as limit the diffusion of the drug. Our results suggest that gentamicin conjugated to native silk and carboxyl-enriched silk inhibits P. aeruginosa growth. Development of stabilized antibiotic treatments with surface toxicity selective against bacteria may serve as an alternative approach to treat active infections, as well as potential prophylactic use as coatings in high-risk cases, such as post-surgical complications or prolonged hospitalization.

10.
Biopolymers ; 107(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741310

RESUMO

In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero- and one-dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self-assembly mechanism highlights the importance of disulfide crosslinking in keratin self-assembly.


Assuntos
Biopolímeros/química , Queratinas Específicas do Cabelo/química , Proteínas Recombinantes/química , Engenharia Tecidual , Biopolímeros/genética , Humanos , Queratinas Específicas do Cabelo/genética , Nanoestruturas/química , Multimerização Proteica , Proteínas Recombinantes/genética
11.
Biochem Soc Trans ; 43(5): 856-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517894

RESUMO

Advances in protein engineering tools, both computational and experimental, has afforded many new protein structures and functions. Here, we present a snapshot of repeat-protein engineering efforts towards new, versatile, alternative binding scaffolds for use in analytical sensors and as imaging agents. Analytical assays, sensors and imaging agents based on the direct binding of analyte are increasingly important for research and diagnostics in medicine, food safety, and national security.


Assuntos
Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Sequências Repetitivas de Aminoácidos , Animais , Técnicas Biossensoriais/tendências , Humanos , Ligantes , Imagem Molecular/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...