Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 997552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248692

RESUMO

Introduction: Deep brain stimulation (DBS) is increasingly used to treat the symptoms of various neurologic and psychiatric conditions. People can undergo the procedure during reproductive years but the safety of DBS in pregnancy remains relatively unknown given the paucity of published cases. We thus conducted a review of the literature to determine the state of current knowledge about DBS in pregnancy and to determine how eligibility criteria are approached in clinical trials with respect to pregnancy and the potential for pregnancy. Methods: A literature review was conducted in EMBASE to identify articles involving DBS and pregnancy. Two reviewers independently analyzed the articles to confirm inclusion. Data extracted for analysis included conditions treated, complications at all stages of pregnancy, neonatal/pediatric outcomes, and DBS target. A second search was then conducted using www.clinicaltrials.gov. The same two reviewers then assessed whether each trial excluded pregnant individuals, lactating individuals, or persons of childbearing age planning to conceive. Also assessed was whether contraception had to be deemed adequate prior to enrollment. Results: The literature search returned 681 articles. Following independent analysis and agreement of two reviewers, 8 pregnancy related DBS articles were included for analysis. These articles described 27 subjects, 29 pregnancies (2 with subsequent pregnancies), and 31 infants (2 twin pregnancies). There was 1 preterm birth at 35 weeks, and 3 patients who experienced discomfort from the DBS battery (i.e., impulse generator) placement site. All 27 patients had a DBS device implanted before they became pregnant, which remained in use throughout their pregnancy. There was exclusion of pregnant individuals from 68% of 135 interventional trials involving DBS. Approximately 44% of these trials excluded persons of childbearing age not on "adequate contraception" or wishing to conceive in the coming years. Finally, 22% excluded breastfeeding persons. Conclusion: The data from 29 pregnancies receiving DBS treatment during pregnancy was not associated with unexpected pregnancy or post-partum complication patterns. Many clinical trials have excluded pregnant individuals. Documentation of outcomes in larger numbers of pregnancies will help clarify the safety profile and will help guide study designs that will safely include pregnant patients.

2.
Front Neurol ; 13: 789581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370913

RESUMO

Objective: Smartphones have shown promise in the assessment of neuro-ophthalmologic and vestibular disorders. We have shown that the head impulse test results recorded using our application are comparable with measurements from clinical video-oculography (VOG) goggles. The smartphone uses ARKit's capability to acquire eye and head movement positions without the need of performing a calibration as in most eye-tracking devices. Here, we measure the accuracy and precision of the eye and head position recorded using our application. Methods: We enrolled healthy volunteers and asked them to direct their eyes, their heads, or both to targets on a wall at known eccentricities while recording their head and eye movements with our smartphone application. We measured the accuracy as the error between the eye or head movement measurement and the location of each target and the precision as the standard deviation of the eye or head position for each of the target positions. Results: The accuracy of head recordings (15% error) was overall better than the accuracy of eye recordings (23% error). We also found that the accuracy for horizontal eye movements (17% error) was better than for vertical (27% error). Precision was also better for head movement (0.8 degrees) recordings than eye movement recordings (1.3 degrees) and variability tended to increase with eccentricity. Conclusion: Our results provide basic metrics evaluating the utility of smartphone applications in the quantitative assessment of head and eye movements. While the new method may not replace the more accurate dedicated VOG devices, they provide a more accessible quantitative option. It may be advisable to include a calibration recording together with any planned clinical test to improve the accuracy.

3.
Digit Biomark ; 5(1): 1-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33615116

RESUMO

OBJECTIVE: Differentiating benign from dangerous causes of dizziness or vertigo presents a major diagnostic challenge for many clinicians. Bedside presentations of peripheral vestibular disorders and posterior fossa strokes are often indistinguishable other than by a few subtle vestibular eye movements. The most challenging of these to interpret is the head impulse test (HIT) of vestibulo-ocular reflex (VOR) function. There have been major advances in portable video-oculography (VOG) quantification of the video HIT (vHIT), but these specialized devices are not routinely available in most clinical settings. As a first step towards smartphone-based diagnosis of strokes in patients presenting vestibular symptoms, we sought proof of concept that we could use a smartphone application ("app") to accurately record the vHIT. METHODS: This was a cross-sectional agreement study comparing a novel index test (smartphone-based vHIT app) to an accepted reference standard test (VOG-based vHIT) for measuring VOR function. We recorded passive (examiner-performed) vHIT sequentially with both methods in a convenience sample of patients visiting an otoneurology clinic. We quantitatively correlated VOR gains (ratio of eye to head movements during the HIT) from each side/ear and experts qualitatively assessed the physiologic traces by the two methods. RESULTS: We recruited 11 patients; 1 patient's vHIT could not be reliably quantified with either device. The novel and reference test VOR gain measurements for each ear (n = 20) were highly correlated (Pearson's r = 0.9, p = 0.0000001) and, qualitatively, clinically equivalent. CONCLUSIONS: This preliminary study provides proof of concept that an "eyePhone" app could be used to measure vHIT and eventually developed to diagnose vestibular strokes by smartphone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...