Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 163: 112923, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318090

RESUMO

It is currently understood that tobacco smoking is a major cause of pulmonary disease due to pulmonary/lung inflammation. However, due to a highly dynamic market place and an abundance of diverse products, less is known about the effects of e-cigarette (E-cig) use on the lung. In addition, varieties of E-cig liquids (e-liquids), which deliver nicotine and numerous flavor chemicals into the lungs, now number in the 1000s. Thus, a critical need exists for safety evaluations of these E-cig products. Herein, we employed a "2-stage in vivo screening platform" (zebrafish to mouse) to assess the safety profiles of e-liquids. Using the zebrafish, we collected embryo survival data after e-liquid exposure as well as neutrophil migration data, a key hallmark for a pro-inflammatory response. Our data indicate that certain e-liquids induce an inflammatory response in our zebrafish model and that e-liquid exposure alone results in pro-inflammatory lung responses in our C57BL/6J model, data collected from lung staining and ELISA analysis, respectively, in the mouse. Thus, our platform can be used as an initial assessment to ascertain the safety profiles of e-liquid using acute inflammatory responses (zebrafish, Stage 1) as our initial metric followed by chronic studies (C57BL/6J, Stage 2).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Vaping , Animais , Estudos de Viabilidade , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/induzido quimicamente , Vaping/efeitos adversos , Peixe-Zebra
2.
PLoS One ; 16(8): e0256166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383849

RESUMO

As electronic cigarette (E-cig) use, also known as "vaping", has rapidly increased in popularity, data regarding potential pathologic effects are recently emerging. Recent associations between vaping and lung pathology have led to an increased need to scrutinize E-cigs for adverse health impacts. Our previous work (and others) has associated vaping with Ca2+-dependent cytotoxicity in cultured human airway epithelial cells. Herein, we develop a vaped e-liquid pulmonary exposure mouse model to evaluate vaping effects in vivo. Using this model, we demonstrate lung pathology through the use of preclinical measures, that is, the lung wet: dry ratio and lung histology/H&E staining. Further, we demonstrate that acute vaping increases macrophage chemotaxis, which was ascertained using flow cytometry-based techniques, and inflammatory cytokine production, via Luminex analysis, through a Ca2+-dependent mechanism. This increase in macrophage activation appears to exacerbate pulmonary pathology resulting from microbial infection. Importantly, modulating Ca2+ signaling may present a therapeutic direction for treatment against vaping-associated pulmonary inflammation.


Assuntos
Cálcio/metabolismo , Misturas Complexas/efeitos adversos , Infecções por Klebsiella/etiologia , Klebsiella pneumoniae/patogenicidade , Pneumonia Bacteriana/etiologia , Vaping/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Quimiotaxia/imunologia , Sistemas Eletrônicos de Liberação de Nicotina , Expressão Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
3.
Front Physiol ; 12: 634839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040540

RESUMO

Though the current preponderance of evidence indicates the toxicity associated with the smoking of tobacco products through conventional means, less is known about the role of "vaping" in respiratory disease. "Vaping" is described as the use of electronic cigarettes (E-Cigarettes or E-Cigs), which has only more recently been available to the public (∼10 years) but has quickly emerged as a popular means of tobacco consumption worldwide. The World Health Organization (WHO) declared the SARS-CoV-2 outbreak as a global pandemic in March 2020. SARS-CoV-2 can easily be transmitted between people in close proximity through direct contact or respiratory droplets to develop coronavirus infectious disease 2019 (COVID-19). Symptoms of COVID-19 range from a mild flu-like illness with high fever to severe respiratory distress syndrome and death. The risk factors for increased disease severity remain unclear. Herein, we utilize a murine-tropic coronavirus (beta coronavirus) MHV-A59 along with a mouse model and measures of pathology (lung weight/dry ratios and histopathology) and inflammation (ELISAs and cytokine array panels) to examine whether vaping may exacerbate the pulmonary disease severity of coronavirus disease. While vaping alone did result in some noted pathology, mice exposed with intranasal vaped e-liquid suffered more severe mortality due to pulmonary inflammation than controls when exposed to coronavirus infection. Our data suggest a role for vaping in increased coronavirus pulmonary disease in a mouse model. Furthermore, our data indicate that disease exacerbation may involve calcium (Ca2+) dysregulation, identifying a potential therapeutic intervention.

4.
Science ; 274(5290): 1170-3, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8895461

RESUMO

Recent work suggests a discernible human influence on climate. This finding is supported, with less restrictive assumptions than those used in earlier studies, by a 1961 through 1995 data set of radiosonde observations and by ensembles of coupled atmosphere-ocean simulations forced with changes in greenhouse gases, tropospheric sulfate aerosols, and stratospheric ozone. On balance, agreement between the simulations and observations is best for a combination of greenhouse gas, aerosol, and ozone forcing. The uncertainties remaining are due to imperfect knowledge of radiative forcing, natural climate variability, and errors in observations and model response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...