Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16754-16766, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517314

RESUMO

We report a highly controlled technique for the synthesis of polymer films atop a substrate by combining spin coating with ring-opening metathesis polymerization (ROMP), herein termed spin coating ROMP (scROMP). The scROMP approach combines polymer synthesis and deposition into one process, fabricating films of up to 36 cm2 in under 3 min with orders-of-magnitude reduction in solvent usage. This method can convert numerous norbornene-type molecules into homopolymers and random copolymers as uniform films on both porous and nonporous substrates. Film thickness can be varied from a few hundred nanometers to a few tens of micrometers based on spin speed and monomer concentration. The resulting polymers possess high MW (>100 kDa) and low polydispersity (PDI) (<1.2) values that are similar to ROMP polymers made in solution. We also devise a model to investigate the balance between convective monomer spin-off and polymer growth from the surface, which allows the determination of critical kinetic parameters for scROMP. Finally, translation of scROMP to porous supports enables the synthesis of thin film composite membranes that demonstrate the ability to dehydrate ethanol by pervaporation.

2.
Nanoscale Adv ; 5(19): 5301-5308, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767044

RESUMO

The combination of conducting polymers with electro- and photoactive proteins into thin films holds promise for advanced energy conversion materials and devices. The emerging field of protein electronics requires conductive soft materials in a composite with electrically insulating proteins. The electropolymerization of pyrrole through voids in a drop-casted photosystem I (PSI) multilayer film enables the straightforward fabrication of photoactive and conductive biohybrid films. The rate of polypyrrole (PPy) growth is reduced by the presence of the PSI film but is insensitive to its thickness, suggesting that rapid diffusion of pyrrole through the voids within the PSI film enables initiation at vacant areas on the gold surface. The base thickness of the composite tends to increase with time, as PPy chains propagate through and beyond the PSI film, coalescing to exhibit a tubule-like morphology as observed by scanning electron microscopy. Increasing amounts of PPy greatly increase the capacitance of the composite films in a manner almost identical to that of pure PPy films grown from unmodified gold, consistent with a high polymer/aqueous interfacial area and a conductive composite film. While PPy is not photoactive here, all composite films, including those with large amounts of PPy, exhibit photocurrents when irradiated by white light in the presence of redox mediator species. Optimization of the Py electropolymerization time is necessary, as increasing amounts of PPy lead to decreased photocurrent density due to a combination of light absorbance by the polymer and reduced accessibility of redox species to active PSI sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...