Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673084

RESUMO

The controlled design of robust, well reproducible, and functional nanomaterials made according to simple processes is of key importance to envision future applications. In the field of porous materials, tuning nanoparticle features such as specific area, pore size and morphology by adjusting simple parameters such as pH, temperature or solvent is highly needed. In this work, we address the tunable control of the pore morphology of mesoporous silica (MS) nanoparticles (NPs) with the sol-gel reaction temperature (Tsg). We show that the pore morphology of MS NPs alone or of MS shell covering iron oxide nanoparticles (IO NPs) can be easily tailored with Tsg orienting either towards stellar (ST) morphology (large radial pore of around 10 nm) below 80 °C or towards a worm-like (WL) morphology (small randomly oriented pores channel network, of 3-4 nm pore size) above 80 °C. The relaxometric and magnetothermal features of IO@STMS or IO@WLMS core shell NPs having respectively stellar or worm-like morphologies are compared and discussed to understand the role of the pore structure for MRI and magnetic hyperthermia applications.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Temperatura
2.
J Colloid Interface Sci ; 542: 469-482, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772509

RESUMO

The engineering of luminescent nanoplatforms for biomedical applications displaying ability for scaling-up, good colloidal stability in aqueous solutions, biocompatibility, and providing an easy detection in vivo by fluorescence methods while offering high potential of functionalities, is currently a challenge. The original strategy proposed here involves the use of large pore (ca. 15 nm) mesoporous silica (MS) nanoparticles (NPs) having a stellate morphology (denoted STMS) on which fluorescent InP/ZnS quantum dots (QDs) are covalently grafted with a high yield (≥90%). These nanoplatforms are after that further coated to avoid a potential QDs release. To protect the QDs from potential release or dissolution, two wrapping methods are developed: (i) a further coating with a silica shell having small pores (≤2 nm) or (ii) a tight polysaccharide shell deposited on the surface of these STMS@QDs particles via an original isobutyramide (IBAM)-mediated method. Both wrapping approaches yield to novel luminescent nanoplatforms displaying a highly controlled structure, a high size monodispersity (ca. 200 and 100 nm respectively) and colloidal stability in aqueous solutions. Among both methods, the IBAM-polysaccharide coating approach is shown the most suitable to ensure QDs protection and to avoid metal cation release over three months. Furthermore, these original STMS@QDs@polysaccharide luminescent nanoplatforms are shown biocompatible in vitro with murine cancer cells and in vivo after injections within zebrafish (ZF) translucent embryos where no sign of toxicity is observed during their development over several days. As assessed by in vivo confocal microscopy imaging, these nanoplatforms are shown to rapidly extravasate from blood circulation to settle in neighboring tissues, ensuring a remanent fluorescent labelling of ZF tissues in vivo. Such fluorescent and hybrid STMS composites are envisioned as novel luminescent nanoplatforms for in vivo fluorescence tracking applications and offer a versatile degree of additional functionalities (drug delivery, incorporation of magnetic/plasmonic core).


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Nanocompostos/química , Pontos Quânticos/química , Dióxido de Silício/química , Amidas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Índio/química , Camundongos , Tamanho da Partícula , Fosfinas/química , Polissacarídeos/química , Porosidade , Espectrometria de Fluorescência , Sulfetos/química , Propriedades de Superfície , Peixe-Zebra/embriologia , Compostos de Zinco/química
3.
Biochim Biophys Acta Gen Subj ; 1863(2): 332-341, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391506

RESUMO

Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50 nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30 nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30-60 nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Modelos Biológicos , Nanopartículas/química , Albumina Sérica Humana/química , Dióxido de Silício/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Porosidade , Albumina Sérica Humana/administração & dosagem , Propriedades de Superfície , Células Tumorais Cultivadas
4.
Dalton Trans ; (15): 2695-711, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19333493

RESUMO

Micro-chlorido, micro-hydroxo-bridged ruthenacycles containing the Ru(CO)2 motif were synthesized by reaction of micro-dichlorido-bridged congener complexes with water in the presence of disodium carbonate. The substitution of one chlorido ligand for one hydroxo occurs with high stereoselectivity affording essentially hydroxo-bridged ruthenacycles, whereby the OH ligand occupies axial positions with respect to the mean plane defined by the chelating ligand. According to computational DFT investigations this stereoselectivity stems from a marked transphobia of the hydroxo ligand towards the carbanion of the ruthenacycle. The catalytic properties of the title compounds in hydrogen atom transfer process and particularly in the partial hydrogenation of alkynes have been investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...