Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 223(12 Suppl 2): S296-S306, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33330916

RESUMO

A Lactobacillus-dominated vaginal microbiota (VMB) has been associated with health and considered an important host defense mechanism against urogenital infections. Conversely, depletion of lactobacilli and increased microbial diversity, amplifies the risk of adverse gynecologic and obstetric outcomes. A common clinical condition that exemplifies dysbiosis is bacterial vaginosis (BV). BV is currently treated with antibiotics, but frequently recurs, due in part to persistent dysbiosis and failure of lactobacilli to repopulate the vagina. New treatment options are needed to address BV. The VMB is relatively simple and optimally dominated by one or several species of Lactobacillus. Lactobacillus crispatus is strongly associated with vaginal health and depleted in dysbiosis. Replenishing the dysbiotic VMB with protective L. crispatus CTV-05 is a promising approach to prevent recurrent infections and improve women's health. Here we discuss confirmation of this approach with the microbiome-based biologic drug, LACTIN-V (L. crispatus CTV-05), focusing on prevention of BV recurrence.


Assuntos
Produtos Biológicos/uso terapêutico , Microbiota , Vagina/microbiologia , Produtos Biológicos/administração & dosagem , Ensaios Clínicos Fase II como Assunto , Desenvolvimento de Medicamentos , Disbiose/microbiologia , Disbiose/terapia , Feminino , Humanos , Lactobacillus crispatus/isolamento & purificação , Lactobacillus crispatus/fisiologia , Microbiota/efeitos dos fármacos , Probióticos , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/terapia
2.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801180

RESUMO

Lactobacillus iners is often associated with vaginal dysbiosis and bacterial vaginosis (BV), which are risk factors for adverse gynecological and obstetric outcomes. To discover natural inhibitors of L. iners, cell-free culture supernatants (CFSs) from 77 vaginal human Lactobacillus strains and 1 human intestinal strain were screened for inhibitory activity. Three active strains were identified, and Lactobacillus paragasseri K7 (K7), a human intestinal strain, produced the most potent L. iners-inhibitory activity. The active material was purified from the K7 CFS and yielded three active peptides, identified as components of two different class IIb, two-peptide bacteriocins, gassericin K7A (GasK7A) and gassericin K7B (GasK7B). The peptides corresponded to the GasK7A α peptide and the GasK7B α and ß peptides. While all three peptides exhibited individual activity against L. iners, GasK7B α was the most potent, with an MIC of 23 ng/ml (4 nM). When combined in equal amounts, the GasK7B α and ß peptides showed synergistic inhibition, with an MIC of 2 ng/ml (each peptide at 0.4 nM). Among the four major vaginal Lactobacillus species, the K7 bacteriocins selectively inhibited L. iners All 21 strains of L. iners tested (100%) were inhibited by the K7 bacteriocins, whereas <20% of the vaginal Lactobacillus crispatus, L. jensenii, and L. gasseri strains were inhibited. The combination of the BV treatment metronidazole and K7 bacteriocins completely killed both L. iners and Gardnerella vaginalis in a coculture experiment to mimic BV conditions. In contrast, this treatment did not inhibit L. crispatus cultures.IMPORTANCELactobacillus iners is a prevalent species of the vaginal microbiome, but unlike other major vaginal Lactobacillus species, it is not considered protective against BV and can coexist with BV-associated bacteria. L. iners is generally the first Lactobacillus species to emerge following the treatment of BV with metronidazole, and mounting evidence suggests that it may contribute to the onset and maintenance of vaginal dysbiosis. The discovery of highly potent bacteriocins that selectively kill L. iners while sparing protective vaginal lactobacilli may provide novel pharmacological tools to better understand the roles of this enigmatic bacterium in vaginal ecology and potentially lead to new and improved therapies for dysbiosis-related conditions such as BV.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactobacillus/química , Lactobacillus/efeitos dos fármacos , Vagina/microbiologia , Feminino , Humanos
3.
AIDS Res Hum Retroviruses ; 32(10-11): 964-971, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950606

RESUMO

Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 µg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.


Assuntos
Anticorpos Neutralizantes/imunologia , Expressão Gênica , Anticorpos Anti-HIV/imunologia , Lactobacillus/metabolismo , Proteínas Recombinantes/imunologia , Anticorpos Neutralizantes/genética , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Anticorpos Anti-HIV/genética , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Lactobacillus/genética , Proteínas Recombinantes/genética , Vagina/imunologia , Vagina/microbiologia
4.
PLoS One ; 10(4): e0122730, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875100

RESUMO

MucoCept is a biotherapeutic for prevention of HIV-1 infection in women and contains a human, vaginal Lactobacillus jensenii that has been genetically enhanced to express the HIV-1 entry inhibitor, modified cyanovirin-N (mCV-N). The objective of this study was to develop a solid vaginal dosage form that supports sustained vaginal colonization of the MucoCept Lactobacillus at levels previously shown, with freshly prepared cultures, to protect macaques from SHIV infection and to test this formulation in a macaque vaginal colonization model. Vaginally disintegrating tablets were prepared by lyophilizing the formulated bacteria in tablet-shaped molds, then packaging in foil pouches with desiccant. Disintegration time, potency and stability of the tablets were assessed. For colonization, non-synchronized macaques were dosed vaginally with either one tablet or five tablets delivered over five days. Vaginal samples were obtained at three, 14, and 21 days post-dosing and cultured to determine Lactobacillus colonization levels. To confirm identity of the MucoCept Lactobacillus strain, genomic DNA was extracted from samples on days 14 and 21 and a strain-specific PCR was performed. Supernatants from bacteria were tested for the presence of the mCV-N protein by Western blot. The tablets were easy to handle, disintegrated within two minutes, potent (5.7x1011 CFU/g), and stable at 4°C and 25°C. Vaginal administration of the tablets to macaques resulted in colonization of the MucoCept Lactobacillus in 66% of macaques at 14 days post-dosing and 83% after 21 days. There was no significant difference in colonization levels for the one or five tablet dosing regimens (p=0.88 Day 14, p=0.99 Day 21). Strain-specific PCR confirmed the presence of the bacteria even in culture-negative macaques. Finally, the presence of mCV-N protein was confirmed by Western blot analysis using a specific anti-mCV-N antibody.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Lactobacillus/crescimento & desenvolvimento , Organismos Geneticamente Modificados , Administração Intravaginal , Adulto , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Contagem de Colônia Microbiana , Feminino , Expressão Gênica , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , Humanos , Lactobacillus/genética , Macaca mulatta , Reação em Cadeia da Polimerase , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Comprimidos , Transgenes , Internalização do Vírus/efeitos dos fármacos
5.
Antimicrob Agents Chemother ; 50(10): 3250-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17005802

RESUMO

Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N). To facilitate efficient expression of CV-N by this bacterium, the L. jensenii 1153 genome was sequenced, allowing identification of native regulatory elements and sites for the chromosomal integration of heterologous genes. A CV-N expression cassette was optimized and shown to produce high levels of structurally intact CV-N when expressed in L. jensenii. Lactobacillus-derived CV-N was capable of inhibiting CCR5-tropic HIV(BaL) infectivity in vitro with a 50% inhibitory concentration of 0.3 nM. The CV-N expression cassette was stably integrated as a single copy into the bacterial chromosome and resolved from extraneous plasmid DNA without adversely affecting the bacterial phenotype. This bacterial strain was capable of colonizing the vagina and producing full-length CV-N when administered intravaginally to mice during estrus phase. The CV-N-producing Lactobacillus was genetically stable when propagated in vitro and in vivo. This work represents a major step towards the development of an inexpensive yet durable protein-based microbicide to block the heterosexual transmission of HIV in women.


Assuntos
Fármacos Anti-HIV , Proteínas de Bactérias , Proteínas de Transporte , Engenharia Genética/métodos , HIV-1/efeitos dos fármacos , Lactobacillus/genética , Vagina/microbiologia , Administração Intravaginal , Animais , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Feminino , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Macaca nemestrina , Dados de Sequência Molecular , Mucosa/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...