Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122748, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39362161

RESUMO

By implementing advanced wastewater treatment technologies coupled with digital tools, high-quality water is produced to be reused within the industry, enhancing process efficiency and closing loops. This paper investigates the impact of three innovation tools (process, circular and digital) in a Solvay chemical plant. Four technologies of the wastewater treatment plant "WAPEREUSE" were deployed, predicting their performance by process modelling and simulation in the PSM Tool. The environmental impact was assessed using Life Cycle Assessment and compared to the impact of the current industrial effluent discharge. The circularity level was assessed through three alternative closed-loop scenarios: (1) conventional treatment and discharge to sea (baseline), (2) conventional and advanced treatment by WAPEREUSE and discharge to sea, (3) conventional and advanced treatment by WAPEREUSE and industrial water reuse through cross-sectorial symbiotic network, where effluents are exchanged among the process industry, municipality and a water utility. Scenario 1 has the lowest pollutants' removal efficiency with environmental footprint of 0.93 mPt/m3. WAPEREUSE technologies decreased COD by 98.3%, TOC by 91.4% and nitrates by 94.5%. Scenario 2 had environmental footprint of 1.12 mPt/m3. The cross-sectorial symbiotic network on the industrial value chain resulted in higher industrial circularity and sustainability level, avoiding effluents discharge. Scenario 3 is selected as the best option with 0.72 mPt per m3, reducing the environmental footprint by 21% and 36% compared to Scenarios 1 and 2, respectively.

2.
Water Res ; 238: 120030, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37150063

RESUMO

Polyethylene (PE) pipes have been widely used in drinking water distribution systems across the world. In many cases, chlorine dioxide (ClO2) is used to maintain a residual disinfectant concentration in potable water. Practical experiences have shown that the lifetime of PE pipes is significantly reduced due to exposure to drinking water with ClO2. Recently, many companies have proposed new PE pipes with a modified formulation, which are more resistant to chlorine dioxide. However, a standardized test method for evaluating the long-term performances of PE pipes is still missing. This literature review was performed to provide a description of chlorine dioxide uses and degradation mechanisms of polyethylene pipes in real water distribution systems. Current accelerated aging methods to evaluate long-term performances of PE pipes exposed to ClO2 are described and discussed along with the common technics used to characterize the specimens. Accelerate aging methods can be distinguished in immersion aging tests and pressurized pipe loop tests. Wide ranges of operational conditions (chlorine dioxide concentration, water pressure, water temperature, etc.) are applied, resulting in a great variety of results. It was concluded that pressurized looping tests applying semi-realistic operational conditions could better replicate the aging mechanisms occurring in service. Despite this, the acceleration and the evaluation of the long-term performance are still difficult to determine precisely. Further experimentation is needed to correlate chemical-mechanical characterization parameters of PE pipes with their lifetime in service.


Assuntos
Compostos Clorados , Desinfetantes , Água Potável , Purificação da Água , Polietileno , Abastecimento de Água , Óxidos , Cloro , Purificação da Água/métodos , Desinfecção
3.
J Hazard Mater ; 423(Pt A): 126958, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34464859

RESUMO

Production of cost-efficient composite materials with desired physicochemical properties from low-cost waste material is much needed to meet the growing needs of the industrial sector. As a step forward, the current study reports for the first time an effective utilization of industrial metal (inorganic) waste as well as fall leaves (organic waste), to produce three types of nanomaterials at the same time; "Titanium Doped Activated Carbon Nanostructures (Ti-ACNs)", "Nanocellulose (NCel)", and combination of both "Titanium Doped Activated Carbon Cellulose Nanocomposite (Ti-AC-Cel-NC)". X-ray diffraction (XRD), transmission electron microscopy (TEM) and microanalysis (EDXS) measurements reveal that the Ti-ACNs material is formed by Ti-nanostructures, generally poorly crystalized but in some cases forming hexagonal Ti-crystallites of 15 nm, embedded in mutated graphene clouds. Micro- Fourier transform infrared spectroscopy (micro-FTIR) confirms that the chemical structure of NCel with bond vibrations between 1035 to 2917 cm-1 remained preserved during Ti-AC-Cel-NC formation. The prepared materials (Ti-ACNs, Ti-AC-Cel-NC) have demonstrated rapid removal of organic pollutants (Crystal Violet, Methyl Violet) from wastewater through surface adsorption and photocatalysis. In the first 20 min, Ti-ACNs have adsorbed ≈87% of the organic pollutants and further photocatalyzed them up to ≈96%. When Ti-ACNs are combined with NCel, their efficiency is increased of about four times. This performance originates from the adsorption by mutated graphene-like carbon and assisted photocatalysis by Ti nanostructures as well as the good supporting capacity of NCel for the homogenous Ti-ACNs distribution.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Celulose , Carvão Vegetal , Titânio
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120735, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923374

RESUMO

Isofuranodiene (IFD) is a sesquiterpene occurring in several plant species, which proved to have multiple anticancer activities. IFD has a lipophilic nature and, hence, a very low water solubility and a poor bioavailability; moreover, it is not stable, undergoing the "Cope rearrangement" to the less active curzerene. The use of appropriate delivery systems can thus be considered as a valid tool to enhance IFD bioavailability, solubility, stability and at the same time also to improve its intracellular uptake and pharmacological activity. Within this frame, monoolein (GMO) nanoparticles loaded with IFD were prepared and their enhanced anticancer activity, compared to pristine IFD, was assessed. In this study, for the first time, an in vitro Fourier Transform Infrared and Raman Microspectroscopy approaches were exploited to evaluate the effects of IFD, alone and loaded in GMO nanoparticles, on MDA-MB 231 breast cancer cell line. The anti-cancer effects of IFD were evidenced by both the spectroscopic techniques and discriminated from the GMO-induced changes in the culture environment; moreover, a synergistic effect of IFD and GMO administration can be envisaged by the experimental results.


Assuntos
Nanopartículas , Neoplasias , Furanos , Glicerídeos , Humanos , Células MCF-7
5.
Langmuir ; 37(33): 10166-10176, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369787

RESUMO

Monoolein-based cubic and hexagonal mesophases were investigated as matrices for insulin loading, at low pH, as a function of temperature and in the presence of increasing amounts of oleic acid, as a structural stabilizer for the hexagonal phase. Synchrotron small angle X-ray diffraction, rheological measurements, and attenuated total reflection-Fourier transform infrared spectroscopy were used to study the effects of insulin loading on the lipid mesophases and of the effect of protein confinement in the 2D- and 3D-lipid matrix water channels on its stability and unfolding behavior. We found that insulin encapsulation has only little effects both on the mesophase structures and on the viscoelastic properties of lipid systems, whereas protein confinement affects the response of the secondary structure of insulin to thermal changes in a different manner according to the specific mesophase: in the cubic structure, the unfolding toward an unordered structure is favored, while the prevalence of parallel ß-sheets, and nuclei for fibril formation, is observed in hexagonal structures.


Assuntos
Insulina , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA