Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 155(6): 961-8, 2001 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-11739407

RESUMO

The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.


Assuntos
Endocitose/fisiologia , Complexo de Golgi/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas R-SNARE , Proteínas SNARE , Saccharomyces cerevisiae
2.
Nature ; 407(6801): 153-9, 2000 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-11001046

RESUMO

Membrane-enveloped vesicles travel among the compartments of the cytoplasm of eukaryotic cells, delivering their specific cargo to programmed locations by membrane fusion. The pairing of vesicle v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) with target membrane t-SNAREs has a central role in intracellular membrane fusion. We have tested all of the potential v-SNAREs encoded in the yeast genome for their capacity to trigger fusion by partnering with t-SNAREs that mark the Golgi, the vacuole and the plasma membrane. Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis.


Assuntos
Compartimento Celular , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Transporte Biológico , Retículo Endoplasmático/metabolismo , Escherichia coli , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Lipossomos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae
3.
Nature ; 407(6801): 194-8, 2000 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-11001058

RESUMO

To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE). In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi. This generates a four-helix bundle, which ultimately mediates the actual fusion event. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.


Assuntos
Fusão de Membrana , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli , Complexo de Golgi/metabolismo , Lipossomos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Sensíveis a N-Etilmaleimida , Organelas/metabolismo , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas R-SNARE , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Relação Estrutura-Atividade
4.
Nature ; 407(6801): 198-202, 2000 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-11001059

RESUMO

Lipid bilayer fusion is mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) located on the vesicle membrane (v-SNAREs) and the target membrane (t-SNAREs). The assembled v-SNARE/t-SNARE complex consists of a bundle of four helices, of which one is supplied by the v-SNARE and the other three by the t-SNARE. For t-SNAREs on the plasma membrane, the protein syntaxin supplies one helix and a SNAP-25 protein contributes the other two. Although there are numerous homologues of syntaxin on intracellular membranes, there are only two SNAP-25-related proteins in yeast, Sec9 and Spo20, both of which are localized to the plasma membrane and function in secretion and sporulation, respectively. What replaces SNAP-25 in t-SNAREs of intracellular membranes? Here we show that an intracellular t-SNARE is built from a 'heavy chain' homologous to syntaxin and two separate non-syntaxin 'light chains'. SNAP-25 may thus be the exception rather than the rule, having been derived from genes that encoded separate light chains that fused during evolution to produce a single gene encoding one protein with two helices.


Assuntos
Membranas Intracelulares/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Escherichia coli , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Membranas Intracelulares/química , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Qa-SNARE , Proteínas R-SNARE , Proteínas Recombinantes de Fusão/química , Proteínas SNARE , Saccharomyces cerevisiae , Proteína 25 Associada a Sinaptossoma
5.
J Cell Biol ; 150(1): 105-17, 2000 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-10893260

RESUMO

Is membrane fusion an essentially passive or an active process? It could be that fusion proteins simply need to pin two bilayers together long enough, and the bilayers could do the rest spontaneously. Or, it could be that the fusion proteins play an active role after pinning two bilayers, exerting force in the bilayer in one or another way to direct the fusion process. To distinguish these alternatives, we replaced one or both of the peptidic membrane anchors of exocytic vesicle (v)- and target membrane (t)-SNAREs (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor) with covalently attached lipids. Replacing either anchor with a phospholipid prevented fusion of liposomes by the isolated SNAREs, but still allowed assembly of trans-SNARE complexes docking vesicles. This result implies an active mechanism; if fusion occurred passively, simply holding the bilayers together long enough would have been sufficient. Studies using polyisoprenoid anchors ranging from 15-55 carbons and multiple phospholipid-containing anchors reveal distinct requirements for anchors of v- and t-SNAREs to function: v-SNAREs require anchors capable of spanning both leaflets, whereas t-SNAREs do not, so long as the anchor is sufficiently hydrophobic. These data, together with previous results showing fusion is inhibited as the length of the linker connecting the helical bundle-containing rod of the SNARE complex to the anchors is increased (McNew, J.A., T. Weber, D.M. Engelman, T.H. Sollner, and J.E. Rothman, 1999. Mol. Cell. 4:415-421), suggests a model in which one activity of the SNARE complex promoting fusion is to exert force on the anchors by pulling on the linkers. This motion would lead to the simultaneous inward movement of lipids from both bilayers, and in the case of the v-SNARE, from both leaflets.


Assuntos
Glicosilfosfatidilinositóis/química , Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Transporte Vesicular , Antígenos de Superfície/química , Antígenos de Superfície/genética , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Membrana/genética , Modelos Químicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fosfolipídeos/química , Estrutura Terciária de Proteína/fisiologia , Proteínas R-SNARE , Proteínas SNARE , Proteína 25 Associada a Sinaptossoma , Sintaxina 1 , Terpenos/química
6.
J Cell Biol ; 149(5): 1063-72, 2000 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-10831610

RESUMO

SNARE (SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor) proteins are required for many fusion processes, and recent studies of isolated SNARE proteins reveal that they are inherently capable of fusing lipid bilayers. Cis-SNARE complexes (formed when vesicle SNAREs [v-SNAREs] and target membrane SNAREs [t-SNAREs] combine in the same membrane) are disrupted by the action of the abundant cytoplasmic ATPase NSF, which is necessary to maintain a supply of uncombined v- and t-SNAREs for fusion in cells. Fusion is mediated by these same SNARE proteins, forming trans-SNARE complexes between membranes. This raises an important question: why doesn't NSF disrupt these SNARE complexes as well, preventing fusion from occurring at all? Here, we report several lines of evidence that demonstrate that SNAREpins (trans-SNARE complexes) are in fact functionally resistant to NSF, and they become so at the moment they form and commit to fusion. This elegant design allows fusion to proceed locally in the face of an overall environment that massively favors SNARE disruption.


Assuntos
Proteínas de Transporte/farmacologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Expressão Gênica/fisiologia , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Mutagênese/fisiologia , Proteínas Sensíveis a N-Etilmaleimida , Estrutura Terciária de Proteína , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Temperatura
7.
EMBO J ; 19(6): 1272-8, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10716927

RESUMO

It has recently been reported that N-ethylmaleimide-sensitive fusion ATPase (NSF) can fuse protein-free liposomes containing substantial amounts of 1,2-dioleoylphosphatidylserine (DOPS) and 1, 2-dioleoyl-phosphatidyl-ethanolamine (DOPE) (Otter-Nilsson et al., 1999). The authors impart physiological significance to this observation and propose to re-conceptualize the general role of NSF in fusion processes. We can confirm that isolated NSF can fuse liposomes of the specified composition. However, this activity of NSF is resistant to inactivation by N-ethylmaleimide and does not depend on the presence of alpha-SNAP (soluble NSF-attachment protein). Moreover, under the same conditions, either alpha-SNAP, other proteins apparently unrelated to vesicular transport (glyceraldehyde-3-phosphate dehydrogenase or lactic dehydrogenase) or even 3 mM magnesium ions can also cause lipid mixing. In contrast, neither NSF nor the other proteins nor magnesium had any significant fusogenic activity with liposomes composed of a biologically occurring mixture of lipids. A straightforward explanation is that the lipid composition chosen as optimal for NSF favors non-specific fusion because it is physically unstable when formed into liposomes. A variety of minor perturbations could then trigger coalescence.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Fusão de Membrana , Proteínas de Transporte Vesicular , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Etilmaleimida/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Complexo de Golgi/química , L-Lactato Desidrogenase/metabolismo , Magnésio/farmacologia , Fusão de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Sensíveis a N-Etilmaleimida , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Ratos , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Termodinâmica
8.
Proc Natl Acad Sci U S A ; 96(22): 12565-70, 1999 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-10535962

RESUMO

A protease-resistant core domain of the neuronal SNARE complex consists of an alpha-helical bundle similar to the proposed fusogenic core of viral fusion proteins [Skehel, J. J. & Wiley, D. C. (1998) Cell 95, 871-874]. We find that the isolated core of a SNARE complex efficiently fuses artificial bilayers and does so faster than full length SNAREs. Unexpectedly, a dramatic increase in speed results from removal of the N-terminal domain of the t-SNARE syntaxin, which does not affect the rate of assembly of v-t SNARES. In the absence of this negative regulatory domain, the half-time for fusion of an entire population of lipid vesicles by isolated SNARE cores ( approximately 10 min) is compatible with the kinetics of fusion in many cell types.


Assuntos
Fusão de Membrana , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Transporte Vesicular , Bicamadas Lipídicas , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Proteínas Qa-SNARE , Proteínas SNARE , Proteína 25 Associada a Sinaptossoma
9.
Proc Natl Acad Sci U S A ; 96(22): 12571-6, 1999 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-10535963

RESUMO

Membrane bilayer fusion has been shown to be mediated by v- and t-SNAREs initially present in separate populations of liposomes and to occur with high efficiency at a physiologically meaningful rate. Lipid mixing was demonstrated to involve both the inner and the outer leaflets of the membrane bilayer. Here, we use a fusion assay that relies on duplex formation of oligonucleotides introduced in separate liposome populations and report that SNARE proteins suffice to mediate complete membrane fusion accompanied by mixing of luminal content. We also find that SNARE-mediated membrane fusion does not compromise the integrity of liposomes.


Assuntos
Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Transporte Vesicular , Sequência de Bases , Primers do DNA , Cinética , Lipídeos/química , Lipossomos , Proteínas de Membrana/fisiologia , Proteínas SNARE
10.
Mol Cell ; 2(5): 539-48, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9844627

RESUMO

The structure of 20 S particles, consisting of NSF, SNAPs, and SNARE complexes, was analyzed by electron microscopy and fluorescence resonance energy transfer. Structural changes associated with the binding of alpha-SNAP and NSF to SNARE complexes define the contribution of each component to the 20 S particle structure. The synaptic SNARE complex forms a 2.5 x 15 nm rod. alpha-SNAP binds laterally to the rod, increasing its width but not its length. NSF binds to one end of the SNAP/SNARE complex; the resulting 20 S particles measure 22 nm in length and vary in width from 6 nm at their narrowest point to 13.5 nm at their widest. The transmembrane domains of VAMP and syntaxin emerge together at the NSF-distal end of 20 S particles, adjacent to the amino terminus of alpha-SNAP.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/ultraestrutura , Centrifugação com Gradiente de Concentração , Dimerização , Transferência de Energia , Escherichia coli/genética , Fluorometria , Glutationa Transferase/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Microscopia Imunoeletrônica , Proteínas Sensíveis a N-Etilmaleimida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
11.
Cell ; 92(6): 759-72, 1998 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-9529252

RESUMO

Recombinant v- and t-SNARE proteins reconstituted into separate lipid bilayer vesicles assemble into SNAREpins-SNARE complexes linking two membranes. This leads to spontaneous fusion of the docked membranes at physiological temperature. Docked unfused intermediates can accumulate at lower temperatures and can fuse when brought to physiological temperature. A supply of unassembled v- and t-SNAREs is needed for these intermediates to form, but not for the fusion that follows. These data imply that SNAREpins are the minimal machinery for cellular membrane fusion.


Assuntos
Membrana Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular , Proteínas de Bactérias/metabolismo , Membrana Celular/química , DNA Bacteriano/isolamento & purificação , Escherichia coli/genética , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas SNARE
13.
EMBO J ; 14(13): 3064-72, 1995 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-7621821

RESUMO

Secretory proteins become folded by the action of a number of molecular chaperones soon after they enter the endoplasmic reticulum (ER). In mammalian cells, the ER membrane protein calnexin has been shown to be a molecular chaperone involved in the folding of secretory proteins and in the assembly of cell surface receptor complexes. We have used a PCR strategy to identify the Schizosaccharomyces pombe calnexin homologue, cnx1+. The cnx1+ encoded protein, Cnx1, was shown to be a calcium binding type I integral membrane glycoprotein. At its 5' end, the cnx1+ gene has consensus heat shock transcriptional control elements and was inducible by heat shock and by the calcium ionophore A23187. Unlike the sequence-related Saccharomyces cerevisiae CNE1 gene, the S.pombe cnx1+ gene was essential for cell viability. The full-length Cnx1 protein was able to complement the cnx1+ gene disruption but the full-length mammalian calnexin could not. The ER lumenal domain of Cnx1, which was secreted from cells, was capable of complementing the cnx1::ura4 lethal phenotype. The equivalent region of mammalian calnexin has been shown to possess molecular chaperone activity. It is possible that the lethal phenotype is caused by the absence of this chaperone activity in the S.pombe cnx1+ gene disruption.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Retículo Endoplasmático/genética , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/biossíntese , Calnexina , Cães , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/biossíntese , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Uracila/biossíntese
14.
J Biol Chem ; 270(1): 244-53, 1995 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-7814381

RESUMO

We have used a polymerase chain reaction strategy to identify in the yeast Saccharomyces cerevisiae genes of the mammalian calnexin/calreticulin family, and we have identified and isolated a single gene, CNE1. The protein predicted from the CNE1 DNA sequence shares some of the motifs with calnexin and calreticulin, and it is 24% identical and 31% similar at the amino acid level with mammalian calnexin. On the basis of its solubility in detergents and its lack of extraction from membranes by 2.5 M urea, high salt, and sodium carbonate at pH 11.5, we have established that Cne1p is an integral membrane protein. However, unlike calnexins, the predicted carboxyl-terminal membrane-spanning domain of Cne1p terminates directly. Furthermore, based on its changed mobility from 76 to 60 kDa after endoglycosidase H digestion Cne1p was shown to be N-glycosylated. Localization of the Cne1p protein by differential and analytical subcellular fractionation as well as by confocal immunofluorescence microscopy showed that it was exclusively located in the endoplasmic reticulum (ER), despite the lack of known ER retention motifs. Although six Ca(2+)-binding proteins were detected in the ER fractions, they were all soluble proteins, and Ca2+ binding activity has not been detected for Cne1p. Disruption of the CNE1 gene did not lead to inviable cells or to gross effects on the levels of secreted proteins such as alpha-pheromone or acid phosphatase. However, in CNE1 disrupted cells, there was an increase of cell-surface expression of an ER retained temperature-sensitive mutant of the alpha-pheromone receptor, ste2-3p, and also an increase in the secretion of heterologously expressed mammalian alpha 1-antitrypsin. Hence, Cne1p appears to function as a constituent of the S. cerevisiae ER protein quality control apparatus.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Calnexina , Calreticulina , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Biochemistry ; 30(37): 8929-36, 1991 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-1892810

RESUMO

The S2 subsite specificity of the plant protease papain has been altered to resemble that of mammalian cathepsin B by site-directed mutagenesis. On the basis of amino acid sequence alignments for papain and cathepsin B, a double mutant (Val133Ala/Ser205Glu) was produced where Val133 and Ser205 are replaced by Ala and Glu, respectively, as well as a triple mutant (Val133Ala/Val157Gly/Ser205Glu), where Val157 is also replaced by Gly. Three synthetic substrates were used for the kinetic characterization of the mutants, as well as wild-type papain and cathepsin B: CBZ-Phe-Arg-MCA, CBZ-Arg-Arg-MCA, and CBZ-Cit-Arg-MCA. The ratio of kcat/KM obtained by using CBZ-Phe-Arg-MCA as substrate over that obtained with CBZ-Arg-Arg-MCA is 8.0 for the Val133Ala/Ser205Glu variant, while the equivalent values for wild-type papain and cathepsin B are 904 and 3.6, respectively. This change in specificity has been achieved by replacing only two amino acids out of a total of 212 in papain and with little loss in overall enzyme activity. However, further replacement of Val157 by Gly as in Val133Ala/Val157Gly/Ser205Glu causes an important decrease in activity, although the enzyme still displays a cathepsin B like substrate specificity. In addition, the pH dependence of activity for the Val133Ala/Ser205Glu variant compares well with that of cathepsin B. In particular, the activity toward CBZ-Arg-Arg-MCA is modulated by a group with a pKa of 5.51, a behavior that is also encountered in the case of cathepsin B but is absent with papain.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Mutagênese Sítio-Dirigida , Papaína/genética , Animais , Sequência de Bases , Bovinos , Clonagem Molecular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Dados de Sequência Molecular , Papaína/biossíntese , Ratos , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA