Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 8(6): 741-748, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756372

RESUMO

While there is increasing interest in the study of RNA as a therapeutic target, efforts to understand RNA-ligand recognition at the molecular level lag far behind our understanding of protein-ligand recognition. This problem is complicated due to the more than 10 orders of magnitude in time scales involved in RNA dynamics and ligand binding events, making it not straightforward to design experiments or simulations. Here, we make use of artificial intelligence (AI)-augmented molecular dynamics simulations to directly observe ligand dissociation for cognate and synthetic ligands from a riboswitch system. The site-specific flexibility profiles from our simulations are compared with in vitro measurements of flexibility using selective 2' hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP). Our simulations reproduce known relative binding affinity profiles for the cognate and synthetic ligands, and pinpoint how both ligands make use of different aspects of riboswitch flexibility. On the basis of our dissociation trajectories, we also make and validate predictions of pairs of mutations for both the ligand systems that would show differing binding affinities. These mutations are distal to the binding site and could not have been predicted solely on the basis of structure. The methodology demonstrated here shows how molecular dynamics simulations with all-atom force-fields have now come of age in making predictions that complement existing experimental techniques and illuminate aspects of systems otherwise not trivial to understand.

2.
Nucleic Acids Res ; 49(14): 7856-7869, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289065

RESUMO

The MYCN gene encodes the transcription factor N-Myc, a driver of neuroblastoma (NB). Targeting G-quadruplexes (G4s) with small molecules is attractive strategy to control the expression of undruggable proteins such as N-Myc. However, selective binders to G4s are challenging to identify due to the structural similarity of many G4s. Here, we report the discovery of a small molecule ligand (4) that targets the noncanonical, hairpin containing G4 structure found in the MYCN gene using small molecule microarrays (SMMs). Unlike many G4 binders, the compound was found to bind to a pocket at the base of the hairpin region of the MYCN G4. This compound stabilizes the G4 and has affinity of 3.5 ± 1.6 µM. Moreover, an improved analog, MY-8, suppressed levels of both MYCN and MYCNOS (a lncRNA embedded within the MYCN gene) in NBEB neuroblastoma cells. This work indicates that the approach of targeting complex, hybrid G4 structures that exist throughout the human genome may be an applicable strategy to achieve selectivity for targeting disease-relevant genes including protein coding (MYCN) as well as non-coding (MYCNOS) gene products.


Assuntos
DNA/química , Quadruplex G , Proteína Proto-Oncogênica N-Myc/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Estrutura Molecular , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
3.
PLoS One ; 15(4): e0230958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294092

RESUMO

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.


Assuntos
MicroRNAs/genética , Oryza/genética , Tolerância ao Sal/genética , Northern Blotting/métodos , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estresse Oxidativo/genética , Salinidade , Plântula/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética
4.
Plant Physiol Biochem ; 137: 62-74, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738218

RESUMO

Shortfall of rain that creates drought like situation in non-irrigated agriculture system often limits rice production, necessitating introduction of drought tolerance trait into the cultivar of interest. The mechanism governing drought tolerance is, however, largely unknown, particularly the involvement of miRNAs, the master regulators of biochemical events. In this regard, response study on a drought tolerant rice variety KMJ 1-12-3 to 20% PEG (osmolality- 315 mOsm/kg) as drought stress revealed significant changes in abundance of several conserved miRNAs targeting transcription factors like homeodomain-leucine zipper, MADS box family protein, C2H2 zinc finger protein and Myb, well known for their importance in drought tolerance in plants. The response study also revealed significant PEG-induced decrease in abundance of the miRNAs targeting cyclin A, cyclin-dependent kinase, guanine nucleotide exchange factor, GTPase-activating protein, 1-aminocyclopropane-1-carboxylic acid oxidase and indole-3-acetic beta-glucosyl transferase indicating miRNA-regulated role of the cell cycle regulators, G-protein signalling and the plant hormones ethylene and IAA in drought tolerance in plants. The study confirmed the existence of four novel miRNAs, including osa-miR12470, osa-miR12471, osa-miR12472 and osa-miR12473, and the targets of three of them could be successfully validated. The PEG-induced decrease in abundance of the novel miRNAs osa-miR12470 and osa-miR12473 targeting RNA dependent RNA polymerase and equilibrative nucleoside transporter, respectively suggested an overall increase in both degradation and synthesis of nucleic acids in plants challenged with drought stress. The drought-responsive miRNAs identified in the study may be proved useful in introducing the trait in the rice cultivars of choice by manipulation of their cellular abundance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Northern Blotting , Etilenos/metabolismo , Oryza/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
5.
Invest Ophthalmol Vis Sci ; 58(13): 5682-5691, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101404

RESUMO

Purpose: Intraocular inflammation in tuberculosis-associated uveitis (TBU) is usually widespread, and responds unpredictably to treatment. Herein, we analyze the intraocular T-cell response in TBU for its surface phenotype, antigenic specificity, and functional characteristics to explain the above observations. Methods: We isolated T cells from vitreous humor samples of patients with TBU and non-TB uveitis (controls). These were directly stained for surface markers CD4, CD8, CD45RO, CD45RA, CCR7, as well as intracellular cytokines IFN-γ, TNF-α, and IL-17 and analyzed on flow cytometry. Antigenic specificity was determined by activating with Mycobacterium tuberculosis-specific antigen Early Secreted Antigenic Target-6 (ESAT-6) or retinal crude extract (RCE). Activation-induced cell death (AICD) characteristics of each T-cell population were analyzed by staining for PI-Annexin V, Fas-FasL, phospho-Akt, and phospho-Erk1/2. Results: Immunophenotyping of vitreous humor samples demonstrated polyfunctional effector and central memory CD4+ T helper cells coexpressing IFN-γ, TNF-α, and IL-17. Both ESAT-6 and RCE (autoreactive) specificity was found in T cells extracted from TBU samples; however, the mycobacterial and autoreactive T-cell populations differed in their sensitivity to AICD. Autoreactive T cells appeared to resist AICD through decreased expression of apoptotic markers, FasL and caspase-3, sustained phosphorylation of Akt, and lowered Erk1/2 activity. Conclusions: Autoreactive T cells are present in TBU eyes and are relatively resistant to AICD. An understanding of this epiphenomenon could be crucial in planning treatment of TBU patients, and interpreting response to anti-TB therapy.


Assuntos
Infecções Oculares Bacterianas/imunologia , Imunidade Celular , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Tuberculose Ocular/imunologia , Uveíte/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/patologia , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Retina/microbiologia , Retina/patologia , Linfócitos T/patologia , Tuberculose Ocular/microbiologia , Tuberculose Ocular/patologia , Uveíte/microbiologia , Uveíte/patologia
6.
PLoS One ; 11(9): e0163485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27682829

RESUMO

Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...