Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 276(20): 5973-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19754882

RESUMO

Biosynthesis of heme d(1), the essential prosthetic group of the dissimilatory nitrite reductase cytochrome cd(1), requires the methylation of the tetrapyrrole precursor uroporphyrinogen III at positions C-2 and C-7. We produced Pseudomonas aeruginosa NirE, a putative S-adenosyl-L-methionine (SAM)-dependent uroporphyrinogen III methyltransferase, as a recombinant protein in Escherichia coli and purified it to apparent homogeneity by metal chelate and gel filtration chromatography. Analytical gel filtration of purified NirE indicated that the recombinant protein is a homodimer. NirE was shown to be a SAM-dependent uroporphyrinogen III methyltransferase that catalyzes the conversion of uroporphyrinogen III into precorrin-2 in vivo and in vitro. A specific activity of 316.8 nmol of precorrin-2 h(-1) x mg(-1) of NirE was found for the conversion of uroporphyrinogen III to precorrin-2. At high enzyme concentrations NirE catalyzed an overmethylation of uroporphyrinogen III, resulting in the formation of trimethylpyrrocorphin. Substrate inhibition was observed at uroporphyrinogen III concentrations above 17 microM. The protein did bind SAM, although not with the same avidity as reported for other SAM-dependent uroporphyrinogen III methyltransferases involved in siroheme and cobalamin biosynthesis. A P. aeruginosa nirE transposon mutant was not complemented by native cobA encoding the SAM-dependent uroporphyrinogen III methyltransferase involved in cobalamin formation. However, bacterial growth of the nirE mutant was observed when cobA was constitutively expressed by a complementing plasmid, underscoring the special requirement of NirE for heme d(1) biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Metiltransferases/química , Metiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Teste de Complementação Genética , Heme/biossíntese , Metiltransferases/genética , Dados de Sequência Molecular , Ligação Proteica , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Uroporfirinogênios/metabolismo , Uroporfirinas/metabolismo
2.
Cardiovasc Res ; 57(4): 1044-51, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12650882

RESUMO

OBJECTIVE: Intracellular Na rises rapidly during cardiac ischemia and this has been attributed to the combination of increased influx of Na via sodium-proton exchange and decreased activity of the Na/K ATPase. The aim of these studies was to investigate the effects of ischemia on Na/K ATPase function in Langendorff-perfused rat hearts. METHODS: Na/K ATPase activity was determined by measuring ouabain-sensitive phosphate generation from ATP by cardiac homogenates. RESULTS: Global ischemia (15 and 30 min) caused a substantial reduction in Na/K ATPase function despite high substrate availability in the assay. When sarcolemmal membranes were purified away from the cytosol a profound activation of the Na/K ATPase was revealed following ischemia, indicating that the inhibition was due to the cytosolic accumulation of an inhibitor of Na/K ATPase. The half-life of the inhibitor in cardiac homogenates was 10+/-3 min at room temperature. Perfusion with the antioxidant MPG (1 mmol/l) reduced the accumulation of this inhibitor, however MPG was without effect on Na/K ATPase function when added directly to the Na/K ATPase activity assay. While the inhibitor reduced the activity of cardiac and brain forms of the Na/K ATPase in bioassay experiments, no effect was observed on the renal and skeletal muscle forms of the enzyme. CONCLUSIONS: An unstable cardiac and brain-specific inhibitor of the Na/K ATPase whose production is linked to oxidant stress, accumulates intracellularly during ischemia. Intracellular Na is a primary determinant of electro-mechanical recovery on reperfusion, so inhibition of the Na/K ATPase by this compound may be crucial in determining recovery from ischemia.


Assuntos
Glicina/análogos & derivados , Isquemia Miocárdica/enzimologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Antioxidantes/farmacologia , Bioensaio , Fatores Biológicos/farmacologia , Citosol/metabolismo , Inibidores Enzimáticos/farmacologia , Glicina/farmacologia , Masculino , Técnicas de Cultura de Órgãos , Ouabaína/farmacologia , Estresse Oxidativo , Ratos , Ratos Wistar , Sarcolema/enzimologia , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Sulfidrila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA