Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Lett ; 15(1): e12852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865265

RESUMO

Internationally agreed sustainability goals are being missed. Here, we conduct global meta-analyses to assess how the extent to which humans see themselves as part of nature-known as human-nature connectedness (HNC)-can be used as a leverage point to reach sustainability. A meta-analysis of 147 correlational studies shows that individuals with high HNC had more pronature behaviours and were significantly healthier than those with low HNC. A meta-analysis of 59 experimental studies shows significant increases in HNC after manipulations involving contact with nature and mindfulness practices. Surprisingly, this same meta-analysis finds no significant effect of environmental education on HNC. Thus, HNC is positively linked to mind-sets that value sustainability and behaviours that enhance it. Further, we argue that HNC can be enhanced by targeted practices, and we identify those most likely to succeed. Our results suggest that enhancing HNC, via promotion of targeted practices, can improve sustainability and should be integrated into conservation policy.

2.
Genome Biol Evol ; 14(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876165

RESUMO

Insects have been key players in the assessments of biodiversity impacts of anthropogenically driven environmental change, including the evolutionary and ecological impacts of climate change. Populations of Edith's Checkerspot Butterfly (Euphydryas editha) adapt rapidly to diverse environmental conditions, with numerous high-impact studies documenting these dynamics over several decades. However, studies of the underlying genetic bases of these responses have been hampered by missing genomic resources, limiting the ability to connect genomic responses to environmental change. Using a combination of Oxford Nanopore long reads, haplotype merging, HiC scaffolding followed by Illumina polishing, we generated a highly contiguous and complete assembly (contigs n = 142, N50 = 21.2 Mb, total length = 607.8 Mb; BUSCOs n = 5,286, single copy complete = 97.8%, duplicated = 0.9%, fragmented = 0.3%, missing = 1.0%). A total of 98% of the assembled genome was placed into 31 chromosomes, which displayed large-scale synteny with other well-characterized lepidopteran genomes. The E. editha genome, annotation, and functional descriptions now fill a missing gap for one of the leading field-based ecological model systems in North America.


Assuntos
Borboletas , Genoma , Animais , Borboletas/genética
3.
Curr Opin Insect Sci ; 52: 100939, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644339

RESUMO

Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.


Assuntos
Evolução Biológica , Ecossistema , Animais , Biodiversidade , Insetos
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1848): 20210003, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35184595

RESUMO

Studies in birds and trees show climatic stresses distributed across species' ranges, not only at range limits. Here, new analyses from the butterfly Euphydryas editha reveal mechanisms generating these stresses: geographic mosaics of natural selection, acting on tradeoffs between climate adaptation and fitness traits, cause some range-central populations to evolve to limits of climatic tolerance, while others remain resilient. In one ecotype, selection for predator avoidance drives evolution to limits of thermal tolerance. In a second ecotype, the endangered Bay Checkerspot, selection on fecundity drives evolution to the climate-sensitive limit of ability to complete development within the lifespans of ephemeral hosts, causing routinely high mortality from insect-host phenological asynchrony. The tradeoff between maternal fecundity and offspring mortality generated similar values of fitness on different dates, partly explaining why fecundity varied by more than an order of magnitude. Evolutionary response to the tradeoff rendered climatic variability the main driver of Bay Checkerspot dynamics, and increases in this variability, associated with climate change, were a key factor behind permanent extinction of a protected metapopulation. Finally, we discuss implications for conservation planning of our finding that adaptive evolution can reduce population-level resilience to climate change and generate geographic mosaics of climatic stress. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.


Assuntos
Borboletas , Ecossistema , Animais , Aves , Mudança Climática , Seleção Genética
5.
Glob Chang Biol ; 27(15): 3505-3518, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33896082

RESUMO

As species' poleward range limits expand under climate change, generalists are expected to be better colonists than specialists, extending their ranges faster. This effect of specialization on range shifts has been shown, but so has the reverse cause-effect: in a global meta-analysis of butterfly diets, it was range expansions themselves that caused increases in population-level diet breadth. What could drive this unexpected process? We provide a novel behavioral mechanism by showing that, in a butterfly with extensive ecotypic variation, Edith's checkerspot, diet breadths increased after colonization events as diversification of individual host preferences pulled novel hosts into population diets. Subsequently, populations that persisted reverted toward monophagy. We draw together three lines of evidence from long-term studies of 15 independently evolving populations. First, direct observations showed a significant increase in specialization across decades: in recent censuses, eight populations used fewer host genera than in the 1980s while none used more. Second, behavioral preference-testing experiments showed that extinctions and recolonizations at two sites were followed, at first by diversification of heritable preference ranks and increases in diet breadth, and subsequently by homogenization of preferences and contractions of diet breadth. Third, we found a significant negative association in the 1980s between population-level diet breadth and genetic diversity. Populations with fewer mtDNA haplotypes had broader diets, extending to 3-4 host genera, while those with higher haplotype diversity were more specialized. We infer that diet breadth had increased in younger, recently colonized populations. Preference diversification after colonization events, whether caused by (cryptic) host shifts or by release of cryptic genetic variation after population bottlenecks, provides a mechanism for known effects of range shifts on diet specialization. Our results explain how colonizations at expanding range margins have increased population-level diet breadths, and predict that increasing specialization should accompany population persistence as current range edges become range interiors.


Assuntos
Borboletas , Mudança Climática , Animais , Dieta
6.
Ecol Evol ; 10(3): 1209-1222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076508

RESUMO

Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.We studied two dominant species, Abies spectabilis (AS) and Rhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.All size classes of RC plants had lower mortality above treeline than below it, and young RC plants (<2 m tall) were at higher density above treeline than below. AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size-class distribution, was greater above treeline than below for both species but AS is confined to ~25 m above treeline whereas RC is luxuriantly growing up to 200 m above treeline. Synthesis. Evidence suggests that the elevational limits of RC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand of RC growing above treeline will be colonized by AS that will, in turn, outshade and eventually relegate RC to be a minor component of the community, as is the current situation below the treeline.

7.
Evol Appl ; 12(7): 1417-1433, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417624

RESUMO

We illustrate an evolutionary host shift driven by increased fitness on a novel host, despite maladaptation to it in six separate host-adaptive traits. Here, local adaptation is defined as possession of traits that provide advantage in specific environmental contexts; thus individuals can have higher fitness in benign environments to which they are maladapted than in demanding environments to which they are well adapted. A population of the butterfly Euphydryas editha adapted to a long-lived, chemically well-defended host, Pedicularis, had traditionally been under natural selection to avoid the ephemeral, less-defended Collinsia. The lifespan of Collinsia was so short that it senesced before larvae entered diapause. After logging killed Pedicularis in clear-cut patches and controlled burning simultaneously extended Collinsia lifespan, insect fitness on Collinsia in clearings suddenly became higher than on Pedicularis in adjacent unlogged patches. Collinsia was rapidly colonized and preference for it evolved, but insects feeding on it retained adaptations to Pedicularis in alighting bias, two aspects of postalighting oviposition preference, dispersal bias, geotaxis, and clutch size, all acting as maladaptations to Collinsia. Nonetheless, populations boomed on Collinsia in clearings, creating sources that fed pseudosinks in unlogged patches where Pedicularis was still used. After c. 20 years, butterfly populations in clearings disappeared and the metapopulation reverted to Pedicularis-feeding. Here we show, via experimental manipulation of oviposition by local Pedicularis-adapted and imported Collinsia-adapted butterflies, that the highest survival at that time would have been from eggs laid in clearings by butterflies adapted to Collinsia. Second highest were locals on Pedicularis. In third place would have been locals on Collinsia in clearings, because local females maladaptively preferred senescent plants. Collinsia had been colonized despite maladaptation and, after successional changes, abandoned because of it. However, the abandoned Collinsia could still have provided the highest fitness, given appropriate adaptation. The butterflies had tumbled down an adaptive peak.

8.
Science ; 363(6427)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30545843

RESUMO

We assess scientific evidence that has emerged since the U.S. Environmental Protection Agency's 2009 Endangerment Finding for six well-mixed greenhouse gases and find that this new evidence lends increased support to the conclusion that these gases pose a danger to public health and welfare. Newly available evidence about a wide range of observed and projected impacts strengthens the association between the risk of some of these impacts and anthropogenic climate change, indicates that some impacts or combinations of impacts have the potential to be more severe than previously understood, and identifies substantial risk of additional impacts through processes and pathways not considered in the Endangerment Finding.


Assuntos
Poluição do Ar/legislação & jurisprudência , Mudança Climática , Gases de Efeito Estufa , Saúde Pública , Agricultura , Poluição do Ar/efeitos adversos , Desastres , Humanos , Medição de Risco , Estados Unidos , United States Environmental Protection Agency , Tempo (Meteorologia)
9.
Science ; 362(6419): 1122, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523101

Assuntos
Clima , Insetos , Animais
10.
Nature ; 557(7704): 238-241, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743688

RESUMO

Global transport of organisms by humans provides novel resources to wild species, which often respond maladaptively. Native herbivorous insects have been killed feeding on toxic exotic plants, which acted as 'ecological traps'1-4. We document a novel 'eco-evolutionary trap' stemming from the opposite effect; that is, high fitness on an exotic resource despite lack of adaptation to it. Plantago lanceolata was introduced to western North America by cattle-ranching. Feeding on this exotic plant released a large, isolated population of the native butterfly Euphydryas editha from a longstanding trade-off between maternal fecundity and offspring mortality. Because of this release-and despite a reduced insect developmental rate when feeding on this exotic-Plantago immediately supported higher larval survival than did the insects' traditional host, Collinsia parviflora 5 . Previous work from the 1980s documented an evolving preference for Plantago by ovipositing adults 6 . We predicted that if this trend continued the insects could endanger themselves, because the availability of Plantago to butterflies is controlled by humans, who change land management practices faster than butterflies evolve 6 . Here we report the fulfilment of this prediction. The butterflies abandoned Collinsia and evolved total dependence on Plantago. The trap was set. In 2005, humans withdrew their cattle, springing the trap. Grasses grew around the Plantago, cooling the thermophilic insects, which then went extinct. This local extinction could have been prevented if the population had retained partial use of Collinsia, which occupied drier microhabitats unaffected by cattle removal. The flush of grasses abated quickly, rendering the meadow once again suitable for Euphydryas feeding on either host, but no butterflies were observed from 2008 to 2012. In 2013-2014, the site was naturally recolonized by Euphydryas feeding exclusively on Collinsia, returning the system to its starting point and setting the stage for a repeat of the anthropogenic evolutionary cycle.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Borboletas/fisiologia , Herbivoria , Plantago , Animais , Borboletas/crescimento & desenvolvimento , Bovinos , Domesticação , Extinção Biológica , Feminino , Atividades Humanas , Larva/crescimento & desenvolvimento , Larva/fisiologia , América do Norte , Oviposição , Poaceae/crescimento & desenvolvimento
11.
Glob Chang Biol ; 22(4): 1548-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661135

RESUMO

Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes.


Assuntos
Mudança Climática , Ecologia/métodos , Organismos Aquáticos , Modelos Teóricos , Dinâmica Populacional , Estações do Ano
12.
Ann Bot ; 116(6): 849-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555281

RESUMO

BACKGROUND: Anthropogenic climate change (ACC) will influence all aspects of plant biology over coming decades. Many changes in wild species have already been well-documented as a result of increased atmospheric CO2 concentrations, warming climate and changing precipitation regimes. A wealth of available data has allowed the use of meta-analyses to examine plant-climate interactions on more sophisticated levels than before. These analyses have revealed major differences in plant response among groups, e.g. with respect to functional traits, taxonomy, life-history and provenance. Interestingly, these meta-analyses have also exposed unexpected mismatches between theory, experimental, and observational studies. SCOPE: We reviewed the literature on species' responses to ACC, finding ∼42 % of 4000 species studied globally are plants (primarily terrestrial). We review impacts on phenology, distributions, ecophysiology, regeneration biology, plant-plant and plant-herbivore interactions, and the roles of plasticity and evolution. We focused on apparent deviations from expectation, and highlighted cases where more sophisticated analyses revealed that unexpected changes were, in fact, responses to ACC. CONCLUSIONS: We found that conventionally expected responses are generally well-understood, and that it is the aberrant responses that are now yielding greater insight into current and possible future impacts of ACC. We argue that inconclusive, unexpected, or counter-intuitive results should be embraced in order to understand apparent disconnects between theory, prediction, and observation. We highlight prime examples from the collection of papers in this Special Issue, as well as general literature. We found use of plant functional groupings/traits had mixed success, but that some underutilized approaches, such as Grime's C/S/R strategies, when incorporated, have improved understanding of observed responses. Despite inherent difficulties, we highlight the need for ecologists to conduct community-level experiments in systems that replicate multiple aspects of ACC. Specifically, we call for development of coordinating experiments across networks of field sites, both natural and man-made.


Assuntos
Mudança Climática , Plantas/metabolismo , Evolução Biológica , Dióxido de Carbono/metabolismo , Flores/metabolismo , Espécies Introduzidas , Fenótipo , Plantas/genética , Plântula/fisiologia , Sementes/fisiologia
13.
Glob Chang Biol ; 21(12): 4464-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26185104

RESUMO

Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium. However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed.


Assuntos
Asteraceae/fisiologia , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Espécies Introduzidas , Modelos Biológicos , Dispersão Vegetal
14.
Nature ; 507(7493): 492-5, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24509712

RESUMO

The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.


Assuntos
Migração Animal , Mudança Climática , Clima , Ecossistema , Mapeamento Geográfico , Geografia , Animais , Austrália , Biodiversidade , Modelos Teóricos , Dinâmica Populacional , Água do Mar , Temperatura , Fatores de Tempo , Incerteza
15.
Temperature (Austin) ; 1(2): 67-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27583283

RESUMO

My research focuses on the current impacts of climate change on wildlife, from field-based work on butterflies to synthetic analyses of global impacts on a broad range of species across terrestrial and marine biomes. I work actively with governmental agencies and NGOs to help develop conservation assessment and planning tools aimed at preserving biodiversity in the face of climate change.

16.
PLoS One ; 8(12): e81648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312568

RESUMO

We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.


Assuntos
Carbono/química , Mudança Climática , Responsabilidade Social , Animais , Planeta Terra , Ecossistema , Humanos , Políticas
17.
Mol Ecol ; 22(18): 4753-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23927539

RESUMO

Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host-associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host-adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host-adapted traits, resulting in incipient reproductive isolation among host-associated ecotypes. We show here that Euphydryas aurinia had much weaker host-associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host-adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.


Assuntos
Borboletas/genética , Ecótipo , Genética Populacional , Genoma de Inseto , Adaptação Biológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Borboletas/classificação , California , Ecossistema , Feminino , Fluxo Gênico , Repetições de Microssatélites , Oregon , Oviposição , Fenótipo , Isolamento Reprodutivo , Seleção Genética , Espanha , Especificidade da Espécie
18.
Ecol Lett ; 16 Suppl 1: 58-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23679010

RESUMO

There is increasing pressure from policymakers for ecologists to generate more detailed 'attribution' analyses aimed at quantitatively estimating relative contributions of different driving forces, including anthropogenic climate change (ACC), to observed biological changes. Here, we argue that this approach is not productive for ecological studies. Global meta-analyses of diverse species, regions and ecosystems have already given us 'very high confidence' [sensu Intergovernmental Panel on Climate Change (IPCC)] that ACC has impacted wild species in a general sense. Further, for well-studied species or systems, synthesis of experiments and models with long-term observations has given us similarly high confidence that they have been impacted by regional climate change (regardless of its cause). However, the role of greenhouse gases in driving these impacts has not been estimated quantitatively. Should this be an ecological research priority? We argue that development of quantitative ecological models for this purpose faces several impediments, particularly the existence of strong, non-additive interactions among different external factors. However, even with current understanding of impacts of global warming, there are myriad climate change adaptation options already developed in the literature that could be, and in fact are being, implemented now.


Assuntos
Mudança Climática , Ecologia , Pesquisa/tendências , Adaptação Fisiológica , Animais , Borboletas/fisiologia , Ecologia/métodos , Aquecimento Global , Efeito Estufa , Modelos Teóricos , Projetos de Pesquisa
19.
Biol Lett ; 8(6): 907-9, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22791706

RESUMO

A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change.


Assuntos
Mudança Climática , Ecossistema , Biologia Marinha/métodos , Biologia Marinha/tendências , Coleta de Dados , Interpretação Estatística de Dados , Geografia , Oceanografia/métodos , Oceanos e Mares , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 109(23): 9000-5, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22615406

RESUMO

Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20-50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e.g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species' response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change.


Assuntos
Aclimatação/fisiologia , Mudança Climática , Modelos Biológicos , Fenômenos Fisiológicos Vegetais/fisiologia , Estações do Ano , District of Columbia , Inglaterra , Flores/fisiologia , Especificidade da Espécie , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...