Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189104, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701937

RESUMO

Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.

2.
Cancer Cell Int ; 23(1): 89, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165394

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. METHODS: Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. RESULTS: By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. CONCLUSIONS: Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM.

3.
Immunobiology ; 228(3): 152381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086690

RESUMO

Dominant negative mutations in CARD11 have been reported in patients with immune dysregulation, severe atopic features, and variable T cell alterations. Data on Natural killer (NK) cells from affected patients are lacking. We report on a 12-year-old boy with severe atopic dermatitis, food induced anaphylaxis and hypogammaglobulinemia harbouring a novel de novo heterozygous variant c.169G > A; p.Glu57Lys in CARD11. The dominant negative effect of this mutation was confirmed on both CD4+ and CD8+. CTLA4+Foxp3+CD4+ Tregs were severely reduced. Patient's NK cells showed reduced expression of NKp46, NKG2D and CD69. Patient's CD56bright NK cells showed in vitro impaired production of IFN-γ. Steady state pS6 levels on patient's NK cells were increased and remained elevated upon IL2 + IL12 + IL18 overnight stimulation. Overall, the effect of CARD11 mutation on mTORC1 differs between T and NK cells. These findings may explain the increased susceptibility to viral infections and the reduced immune surveillance in affected patients.


Assuntos
Células Matadoras Naturais , Linfócitos T , Masculino , Humanos , Criança , Mutação , Homeostase , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética
4.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139434

RESUMO

In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Rabdomiossarcoma Embrionário , Animais , Criança , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Desoxiglucose , Doxorrubicina/farmacologia , Glucose , Glicólise , Hexoquinase/metabolismo , Histonas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Lovastatina , Inibidores de MTOR , Ácido Mevalônico , Oxirredutases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rabdomiossarcoma Embrionário/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética
5.
Clin Immunol ; 237: 108974, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278713

RESUMO

Dedicator of Cytokinesis 8 (DOCK8) deficiency is a rare form of autosomal recessive combined immunodeficiency. The effect of DOCK8 deficiency on Natural Killer cell biology has not been fully elucidated yet. Thus, we undertook a detailed phenotypic and functional evaluation of NK cells from seven patients with DOCK8 deficiency. Patients' immature CD56bright NK cells were defective in IFN-γ secretion, while their mature CD56dim NK cells showed impaired cytotoxicity, partially rescued upon rIL-2 addition. Cross-linking of NK cell receptors revealed a specific defect in the CD3 zeta chain-dependent activation pathway in DOCK8 deficiency. Lack of DOCK8, but not of WASP, impaired CCR7 expression on human CD56bright NK cells, a critical receptor for their migration to secondary lymph nodes. Evaluation of a patient's lymph node showed a severe reduction in NK cells that showed increased intracellular expression of CCR7. Our data suggest that DOCK8 deficiency variably affects NK cell homeostasis in humans.


Assuntos
Citocinese , Fatores de Troca do Nucleotídeo Guanina , Células Matadoras Naturais , Receptores CCR7 , Antígeno CD56/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Proteína da Síndrome de Wiskott-Aldrich
6.
Sci Immunol ; 6(63): eabf6723, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533979

RESUMO

Inhibitor of nuclear factor kappa B kinase alpha (IKKα) is critical for p100/NF-κB2 phosphorylation and processing into p52 and activation of the noncanonical NF-κB pathway. A patient with recurrent infections, skeletal abnormalities, absent secondary lymphoid structures, reduced B cell numbers, hypogammaglobulinemia, and lymphocytic infiltration of intestine and liver was found to have a homozygous p.Y580C mutation in the helix-loop-helix domain of IKKα. The mutation preserves IKKα kinase activity but abolishes the interaction of IKKα with its activator NF-κB­inducing kinase and impairs lymphotoxin-ß­driven p100/NF-κB2 processing and VCAM1 expression. Homozygous IKKαY580C/Y580C mutant mice phenocopy the patient findings; lack marginal zone B cells, germinal centers, and antigen-specific T cell response to cutaneous immunization; have impaired Il17a expression; and are susceptible to cutaneous Staphylococcus aureus infection. In addition, these mice demonstrate a severe reduction in medullary thymic epithelial cells, impaired thymocyte negative selection, a restricted TCRVß repertoire, a selective expansion of potentially autoreactive T cell clones, a decreased frequency of regulatory T cells, and infiltration of liver, pancreas, and lung by activated T cells coinciding with organ damage. Hence, this study identifies IKKα deficiency as a previously undescribed cause of primary immunodeficiency with associated autoimmunity.


Assuntos
Autoimunidade/imunologia , Quinase I-kappa B/imunologia , Mutação de Sentido Incorreto/genética , Animais , Células HEK293 , Humanos , Quinase I-kappa B/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto/imunologia
7.
J Leukoc Biol ; 108(4): 1425-1434, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794325

RESUMO

In the present study, we report the analysis of NK cells derived from patients suffering from a rare ovarian cancer histotype of clear cell carcinoma (OCCC) resistant to conventional chemotherapies. We analyzed the phenotype of NK cells derived from peripheral blood (PB) and peritoneal fluid (PF) and evaluated cytotoxic interactions between NK cells and autologous tumor cells (ATC) derived from patients. We provided evidence of impaired degranulation capacity of NK cells derived from patients' PF in the presence of ATC. Analyzing tumor cell ligands recognized by NK cell receptors, we found that ATC are characterized by an HLA class I+ phenotype (although the level of HLA-I expression varies among all patients) and by a heterogeneous expression of ligands for activating NK receptors (from normal to decreased expression of some markers). Furthermore, we observed a down-regulation of crucial NK cell activating receptors, primarily DNAX Accessory Molecule-1 (DNAM-1), on tumor-associated NK cells. Based on these results, we propose that this severe lysis defect may be due to both negative interactions between HLA-I-specific inhibitory NK cell receptors/HLA-I molecules and to defective interactions between activating NK receptors and cognate ligands. In conclusion, for the first time, the phenotypic and functional properties of tumor-associated NK cells and their ATC derived from PF of patients with advanced stage of OCCC were characterized. Taken together results indicate altered interactions between NK cells and ATC and shed light on the aggressive mechanisms of this cancer histotype. Further studies on this rare tumor will be helpful to improve and define more effective therapies.


Assuntos
Carcinoma/imunologia , Comunicação Celular/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Carcinoma/patologia , Feminino , Humanos , Células K562 , Células Matadoras Naturais/patologia , Proteínas de Neoplasias/imunologia , Neoplasias Ovarianas/patologia
9.
Front Immunol ; 10: 1757, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396241

RESUMO

Alessandro Moretta was Professor of Histology at University of Brescia from 1994 to 1997. It was in that period that we met and started a collaboration that continued in the years to follow. He immediately involved us in the production of monoclonal antibodies (mAbs) that allowed the identification and fine characterization of novel receptor molecules that were able to activate or inhibit human Natural Killer cell function, including several antibodies specific for Natural Cytotoxicity Receptor (NCR) and Killer-cell Immunoglobulin-like Receptor (KIR) molecules. These reagents, generated in our laboratory in Brescia, contributed to complete the studies aimed to characterize innate lymphoid NK cells, that had been initiated by Alessandro and his brother Lorenzo in Genoa. Soon, we identified an anti-KIR3DL2 that was subsequently shown to be helpful for the diagnosis and treatment of various forms of cutaneous T cell lymphoma. While in Brescia, Alessandro established a partnership with those of us who were working in the Department of Pediatrics; together, in short time we tackled the goal of studying the role of NK cells in patients with primary immunodeficiencies. This collaboration led to novel discoveries that shed light on the critical role played by NK cells in the immune response against virus and tumors in humans, as best exemplified by our characterization of the molecular mechanisms of impaired control of Epstein-Barr Virus (EBV) infection in patients with X-linked lymphoproliferative (XLP) disease. After Alessandro left Brescia to return to Genoa, our collaboration continued with the same enthusiasm, and even from a distance he remained an extraordinary example of an inspirational and generous mentor. This review is a sign of our gratitude to a mentor and a friend whom we deeply miss.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Células Matadoras Naturais/imunologia , Transtornos Linfoproliferativos , Doenças da Imunodeficiência Primária , Receptores KIR , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/história , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , História do Século XX , História do Século XXI , Humanos , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/história , Transtornos Linfoproliferativos/imunologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/história , Doenças da Imunodeficiência Primária/imunologia , Receptores KIR/genética , Receptores KIR/história , Receptores KIR/imunologia
10.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791364

RESUMO

The crosstalk between cancer cells and host cells is a crucial prerequisite for tumor growth and progression. The cells from both the innate and adaptive immune systems enter into a perverse relationship with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Epithelial ovarian cancer (EOC), the most lethal of all gynecological malignancies, is characterized by a unique TME that paves the way to the formation of metastasis and mediates therapy resistance through the deregulation of immune surveillance. A characteristic feature of the ovarian cancer TME is the ascites/peritoneal fluid, a malignancy-associated effusion occurring at more advanced stages, which enables the peritoneal dissemination of tumor cells and the formation of metastasis. The standard therapy for EOC involves a combination of debulking surgery and platinum-based chemotherapy. However, most patients experience disease recurrence. New therapeutic strategies are needed to improve the prognosis of patients with advanced EOC. Harnessing the body's natural immune defenses against cancer in the form of immunotherapy is emerging as an innovative treatment strategy. NK cells have attracted attention as a promising cancer immunotherapeutic target due to their ability to kill malignant cells and avoid healthy cells. Here, we will discuss the recent advances in the clinical application of NK cell immunotherapy in EOC.


Assuntos
Imunomodulação , Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Biomarcadores Tumorais , Terapia Combinada , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Terapia de Alvo Molecular , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Evasão Tumoral/imunologia
14.
Cell Biol Int ; 42(3): 353-364, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29105212

RESUMO

The aim of this study was to investigate the in vitro effect of Silicon, in the soluble form of sodium orthosilicate, combined and not with the concentrated growth factors (CGF), a platelet-rich preparation, on three different human cell lines of fibroblasts (NHDF), endothelial cells (HUVEC), and osteoblasts (HOBs). Each cell type was treated with sodium orthosilicate at the final concentration of 0.5 mM and 1 mM, CGF, and sodium orthosilicate combined with CGF, for 72 h. At the end of the experimental period, the in vitro effect on cell growth, proliferation, and metabolic activity was evaluated by performing a simple cell count, using an automated cell counter and by evaluating the expression of the intracellular proliferation marker Ki-67, using Fluorescence-activated cell sorting (FACS) analysis. Moreover, the expression of other cell markers and active molecules, such as Collagen type I, Osteopontin, Vascular Endothelial Growth Factor, and endothelial Nitric Oxide Synthase, was evaluated, through immunohistochemistry. Results obtained showed that the combined use of CGF and sodium orthosilicate stimulates cell growth, proliferation, and metabolic activity, suggesting that this treatment could be effective in tissue regeneration.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Compostos de Silício/farmacologia , Plaquetas , Contagem de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Compostos de Silício/metabolismo , Sódio
15.
J Allergy Clin Immunol ; 140(2): 553-564.e4, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28069426

RESUMO

BACKGROUND: Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE: We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS: Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS: Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION: These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.


Assuntos
Candidíase Mucocutânea Crônica/genética , Células Matadoras Naturais/imunologia , Fator de Transcrição STAT1/genética , Adolescente , Adulto , Candidíase Mucocutânea Crônica/imunologia , Criança , Citocinas/farmacologia , Feminino , Expressão Gênica , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT5/metabolismo
16.
J Allergy Clin Immunol ; 139(1): 335-346.e3, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27372564

RESUMO

BACKGROUND: Programmed death 1 (PD-1) is an immunologic checkpoint that limits immune responses by delivering potent inhibitory signals to T cells on interaction with specific ligands expressed on tumor/virus-infected cells, thus contributing to immune escape mechanisms. Therapeutic PD-1 blockade has been shown to mediate tumor eradication with impressive clinical results. Little is known about the expression/function of PD-1 on human natural killer (NK) cells. OBJECTIVE: We sought to clarify whether human NK cells can express PD-1 and analyze their phenotypic/functional features. METHODS: We performed multiparametric cytofluorimetric analysis of PD-1+ NK cells and their functional characterization using degranulation, cytokine production, and proliferation assays. RESULTS: We provide unequivocal evidence that PD-1 is highly expressed (PD-1bright) on an NK cell subset detectable in the peripheral blood of approximately one fourth of healthy subjects. These donors are always serologically positive for human cytomegalovirus. PD-1 is expressed by CD56dim but not CD56bright NK cells and is confined to fully mature NK cells characterized by the NKG2A-KIR+CD57+ phenotype. Proportions of PD-1bright NK cells were higher in the ascites of a cohort of patients with ovarian carcinoma, suggesting their possible induction/expansion in tumor environments. Functional analysis revealed a reduced proliferative capability in response to cytokines, low degranulation, and impaired cytokine production on interaction with tumor targets. CONCLUSIONS: We have identified and characterized a novel subpopulation of human NK cells expressing high levels of PD-1. These cells have the phenotypic characteristics of fully mature NK cells and are increased in patients with ovarian carcinoma. They display low proliferative responses and impaired antitumor activity that can be partially restored by antibody-mediated disruption of PD-1/programmed death ligand interaction.


Assuntos
Células Matadoras Naturais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Degranulação Celular , Proliferação de Células , Citocinas/imunologia , Feminino , Humanos , Células Matadoras Naturais/fisiologia , Neoplasias Ovarianas/imunologia , Fenótipo
17.
Clin Immunol ; 175: 99-108, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923702

RESUMO

NFKB1, a component of the canonical NF-κB pathway, was recently reported to be mutated in a limited number of CVID patients. CVID-associated mutations in NFKB2 (non-canonical pathway) have previously been shown to impair NK cell cytotoxic activity. Although a biological function of NFKB1 in non-human NK cells has been reported, the role of NFKB1 mutations for human NK cell biology and disease has not been investigated yet. We decided therefore to evaluate the role of monoallelic NFKB1 mutations in human NK cell maturation and functions. We show that NFKB1 mutated NK cells present impaired maturation, defective cytotoxicity and reduced IFN-γ production upon in vitro stimulation. Furthermore, human IL-2 activated NFKB1 mutated NK cells fail to up-regulate the expression of the activating marker NKp44 and show reduced proliferative capacity. These data suggest that NFKB1 plays an essential novel role for human NK cell maturation and effector functions.


Assuntos
Células Matadoras Naturais/imunologia , Subunidade p50 de NF-kappa B/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Células K562 , Masculino , NF-kappa B/imunologia
20.
Oncoimmunology ; 4(4): e1001224, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26137398

RESUMO

In this study the phenotype and function of tumor-associated NK cells from peritoneal fluids of a selected cohort of patients with seropapillary ovarian carcinoma were analyzed. In > 50% of these patients, the expression of the activating receptor NKp30 in tumor-associated NK cells was substantially reduced as compared to autologous peripheral blood (PB) NK cells. The impaired expression of this receptor was associated with the presence of one of its cellular ligands (B7-H6), which was detectable as a surface/cytosolic molecule in tumor cells and as a soluble molecule in the peritoneal fluid. NK cells from patients expressing this NKp30low phenotype displayed an impaired interferon-gamma (IFNγ) production and cytolytic function when tested against target cells expressing surface B7-H6. Our data also suggest that in these patients, the defective expression and function of NKp30 may be induced by the chronic engagement of this receptor by soluble B7-H6 or by tumor cells expressing this ligand. The impairment of NK cell functions described herein could represent a novel mechanism by which the tumor microenvironment may contribute to the escape from immune surveillance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...