Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065680

RESUMO

The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest for new neurotropic drugs among derivatives of these heterocycles with pharmacophore groups remains a significant research challenge. The aim of this research work was to develop a synthesis method for new heterocyclic compounds, evaluate their neurotropic and neuroprotective activities, study histological changes, and perform docking analysis. Classical organic synthesis methods were used in the creation of novel heterocyclic systems containing pharmacophore rings. To evaluate the neurotropic activity of these synthesized compounds, a range of biological assays were employed. Docking analysis was conducted using various software packages and methodologies. The neuroprotective activity of compound 13 was tested in seizures with and without pentylenetetrazole (PTZ) administration. Histopathological examinations were performed in different experimental groups in the hippocampus and the entorhinal cortex. As a result of chemical reactions, 16 new, tetra- and pentacyclic heterocyclic compounds were obtained. The biologically studied compounds exhibited protection against PTZ seizures as well as some psychotropic effects. The biological assays evidenced that 13 of the 16 studied compounds showed a high anticonvulsant activity by antagonism with PTZ. The toxicity of the compounds was low. According to the results of the study of psychotropic activity, it was found that the selected compounds have a sedative effect, except compound 13, which exhibited activating behavior and antianxiety effects (especially compound 13). The studied compounds exhibited antidepressant effects, especially compound 13, which is similar to diazepam. Histopathological examination showed that compound 13 produced moderate changes in the brain and exhibited neuroprotective effects in the entorhinal cortex against PTZ-induced damage, reducing gliosis and neuronal loss. Docking studies revealed that out of 16 compounds, 3 compounds bound to the γ-aminobutyric acid type A (GABAA) receptor. Thus, the selected compounds demonstrated anticonvulsant, sedative, and activating behavior, and at the same time exhibited antianxiety and antidepressant effects. Compound 13 bound to the GABAA receptor and exhibited antianxiety, antidepressant, and neuroprotective effects in the entorhinal cortex against PTZ-induced changes.

2.
Bioorg Chem ; 148: 107435, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762999

RESUMO

BACKGROUND: Pyridine and its derivatives play a vital role in medicinal chemistry, serving as key scaffolds for drugs. The ability to bind to biological targets makes pyridine compounds significant, sparking interest in creating new pyridine-based drugs. Thus, the purpose of the research is to synthesize new thioalkyl derivatives of pyridine, predict their biological spectrum, study their psychotropic properties, and based on these findings, perform structure-activity relationships to assess pharmacophore functional groups. METHODS: Classical organic methods were employed for synthesizing new thioalkyl derivatives of pyridine, with a multifaceted pharmacological profiles. Various software packages and methods were employed to evaluate the biological spectrum of the newly synthesized compounds. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. RESULTS: Effective synthetic methods for 6-amino-4-phenyl-2-thio-2H-thiopyran-5-carboxylic acid ethyl ester, 2-amino substituted thiopyridine derivatives and 6-cycloamino-2-thioalkyl-4-phenylnicotinate derivatives were obtained in high yield. Predicted biological spectra and pharmacokinetic data indicated high gastrointestinal absorption and low blood-brain barrier passage for most compounds and demonstrated potential various biological effects, particularly psychotropic properties. Studied compounds demonstrated high anticonvulsant activity through antagonism with pentylenetetrazole. They exhibited low toxicity without inducing muscle relaxation in the studied doses. In psychotropic studies, the compounds displayed activating, sedative, and anxiolytic effects. Notably, the 6-amino-2-thioalkyl-4-phenylnicotinate derivatives demonstrated significant anxiolytic activity (about four times more compared to diazepam). They also exhibited pronounced sedative effects. Ethyl 2-({2-[(diphenylmethyl)amino]-2-oxoethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate exhibited anxiolytic activity even two times greater than diazepam. Moreover, all studied compounds showed statistically significant antidepressant effects. Noteworthy ethyl 2-({2-oxo-2-[(tetrahydrofuran-2-ylmethyl)amino]ethyl}thio)-4-phenyl-6-pyrrolidin-1-ylnicotinate showcasing its unique psychotropic effect. CONCLUSIONS: The selected compounds demonstrate anticonvulsant properties, activating behavior, and anxiolytic effects, while simultaneously exhibiting antidepressant effects and these compounds as promising candidates for further exploration in the development of therapeutics with a broad spectrum of neuropsychiatric applications.


Assuntos
Ansiolíticos , Anticonvulsivantes , Piridinas , Relação Estrutura-Atividade , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Camundongos , Ansiolíticos/farmacologia , Ansiolíticos/síntese química , Ansiolíticos/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Masculino , Convulsões/tratamento farmacológico , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/síntese química , Hipnóticos e Sedativos/química , Pentilenotetrazol
3.
Chem Biodivers ; 21(3): e202302071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230843

RESUMO

Continuing our studies in the field of new heterocyclic compounds with biological interest, herein we report the synthesis and anticancer activity of new N- and S-substituted derivatives of tetracyclic pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines. In this regard, starting from the thieno[2,3-b]pyridine-2-carboxylates, the corresponding 8(9)-aminopyrido[3',2' : 4,5]thieno[3,2-d]pyrimidin-7(8)-ones, as well as chloro derivatives were obtained. Based on the latter, amino, hydrazino and S-alkyl derivatives of pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines were synthesized subsequently. The current study focuses on identifying the potential of thieno[3,2-d]pyrimidine derivatives primarily towards ATR kinase inhibition, through computational predictions, followed by synthesis and cancer cell viability studies, along with an aim to develop the core as PIKK inhibitors for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Piridinas , Antineoplásicos/farmacologia
4.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684318

RESUMO

BACKGROUND: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. METHODS: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. RESULTS: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the "open field" and "elevated plus maze" (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b-f and 4e. The studied compounds increase the latent time of first immobilization on the "forced swimming" (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at -10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at -11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c-f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at -9.3 ± 0.46 kcal/mol). CONCLUSIONS: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.


Assuntos
Ansiolíticos , Pentilenotetrazol , Ansiolíticos/farmacologia , Anticonvulsivantes/química , Antidepressivos/farmacologia , Simulação de Acoplamento Molecular , Pentilenotetrazol/efeitos adversos , Piridinas/química , Pirimidinas/química , Receptores de GABA-A , Relação Estrutura-Atividade
5.
Medchemcomm ; 10(8): 1399-1411, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534657

RESUMO

8-Hydrazino derivatives of pyrano[3,4-c]pyridines and derivatives of the new heterocyclic system 3-thioxopyrano[3,4-c][1,2,4]triazolo[4,3-a]pyridines on the basis of methanesulfonates of pyrano[3,4-c]pyridinium were synthesized by optimization of a previously used method. Derivatives of alkylsulfonyl pyrano[3,4-c][1,2,4]triazolo[4,3-a]pyridines were also synthesized. All compounds were evaluated for their neurotropic activity. Among all the compounds tested for anticonvulsant activity by pentylenetetrazole and maximal electric shock seizure (MES) tests, six compounds (5a, 5b, 5e, 5g, 5j, and 5p) appeared to be active. These compounds were also evaluated for their anxiolytic as well as antidepressant activities using "open field", "elevated plus maze" (EPM), and "forced swimming" tests, respectively. It should be mentioned that compounds tested by the "rotating rod" method did not affect neuromuscular coordination. The most active compound appeared to be 5g in all tests. Docking studies of the most active compounds were performed on the GABAA receptor, SERT and 5-HT1A receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA