Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778081

RESUMO

Two independent exome sequencing initiatives aimed to identify new genes involved in the predisposition to nonpolyposis colorectal cancer led to the identification of heterozygous loss-of-function variants in NPAT, a gene that encodes a cyclin E/CDK2 effector required for S phase entry and a coactivator of histone transcription, in two families with multiple members affected with colorectal cancer. Enrichment of loss-of-function and predicted deleterious NPAT variants was identified in familial/early-onset colorectal cancer patients compared to non-cancer gnomAD individuals, further supporting the association with the disease. Previous studies in Drosophila models showed that NPAT abrogation results in chromosomal instability, increase of double strand breaks, and induction of tumour formation. In line with these results, colorectal cancers with NPAT somatic variants and no DNA repair defects have significantly higher aneuploidy levels than NPAT-wildtype colorectal cancers. In conclusion, our findings suggest that constitutional inactivating NPAT variants predispose to mismatch repair-proficient nonpolyposis colorectal cancer.

2.
Cancers (Basel) ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398126

RESUMO

The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS: TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS: Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS: In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.

4.
Nucleic Acids Res ; 51(14): 7143-7162, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37351572

RESUMO

In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.


Assuntos
Análise de Sequência de DNA , DNA/genética , DNA/análise , Formaldeído , Inclusão em Parafina/métodos , Análise de Sequência de DNA/métodos , Fixação de Tecidos/métodos
5.
NAR Cancer ; 5(2): zcad011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36915289

RESUMO

The exonuclease domain of DNA polymerases epsilon's catalytic subunit (POLE) removes misincorporated nucleotides, called proofreading. POLE-exonuclease mutations cause colorectal- and endometrial cancers with an extreme burden of single nucleotide substitutions. We recently reported that particularly the hereditary POLE exonuclease mutation N363K predisposes in addition to aggressive giant cell glioblastomas. We knocked-in this mutation homozygously into human cell lines and compared its properties to knock-ins of the likewise hereditary POLE L424V mutation and to a complete proofreading-inactivating mutation (exo-null). We found that N363K cells have higher mutation rates as both L424V- or exo-null mutant cells. In contrast to L424V cells, N363K cells expose a growth defect, replication stress and DNA damage. In non-transformed cells, these burdens lead to aneuploidy but macroscopically normal nuclei. In contrast, transformed N363K cells phenocopy the enlarged and disorganized nuclei of giant cell glioblastomas. Taken together, our data characterize a POLE exonuclease domain mutant that not only causes single nucleotide hypermutation, but in addition DNA damage and chromosome instability, leading to an extended tumor spectrum. Our results expand the understanding of the polymerase exonuclease domain and suggest that an assessment of both the mutational potential and the genetic instability might refine classification and treatment of POLE-mutated tumors.

6.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682944

RESUMO

Endometrial cancer (EC) is the second most frequent gynecological cancer worldwide. Although improvements in EC classification have enabled an accurate establishment of disease prognosis, women with a high-risk or recurrent EC face a dramatic situation due to limited further treatment options. Therefore, new strategies that closely mimic the disease are required to maximize drug development success. Patient-derived xenografts (PDXs) are widely recognized as a physiologically relevant preclinical model. Hence, we propose to molecularly and histologically validate EC PDX models. To reveal the molecular landscape of PDXs generated from 13 EC patients, we performed histological characterization and whole-exome sequencing analysis of tumor samples. We assessed the similarity between PDXs and their corresponding patient's tumor and, additionally, to an extended cohort of EC patients obtained from The Cancer Genome Atlas (TCGA). Finally, we performed functional enrichment analysis to reveal differences in molecular pathway activation in PDX models. We demonstrated that the PDX models had a well-defined and differentiated molecular profile that matched the genomic profile described by the TCGA for each EC subtype. Thus, we validated EC PDX's potential to reliably recapitulate the majority of histologic and molecular EC features. This work highlights the importance of a thorough characterization of preclinical models for the improvement of the success rate of drug-screening assays for personalized medicine.


Assuntos
Neoplasias do Endométrio , Recidiva Local de Neoplasia , Animais , Modelos Animais de Doenças , Neoplasias do Endométrio/patologia , Feminino , Genômica , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Genom ; 2(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35720974

RESUMO

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

8.
J Mol Diagn ; 24(5): 529-542, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35569879

RESUMO

Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).


Assuntos
Genômica , Doenças Raras , Biologia Computacional , Exoma , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma
9.
Biomark Res ; 9(1): 37, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016160

RESUMO

BACKGROUND: Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. METHODS: We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). RESULTS: Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/-EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. CONCLUSIONS: Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.

10.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686071

RESUMO

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Assuntos
Neoplasias Encefálicas/imunologia , Líquido Cefalorraquidiano/imunologia , Leucócitos , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Prognóstico
11.
Cancers (Basel) ; 11(3)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871259

RESUMO

Colorectal cancer (CRC) shows aggregation in some families but no alterations in the known hereditary CRC genes. We aimed to identify new candidate genes which are potentially involved in germline predisposition to familial CRC. An integrated analysis of germline and tumor whole-exome sequencing data was performed in 18 unrelated CRC families. Deleterious single nucleotide variants (SNV), short insertions and deletions (indels), copy number variants (CNVs) and loss of heterozygosity (LOH) were assessed as candidates for first germline or second somatic hits. Candidate tumor suppressor genes were selected when alterations were detected in both germline and somatic DNA, fulfilling Knudson's two-hit hypothesis. Somatic mutational profiling and signature analysis were also performed. A series of germline-somatic variant pairs were detected. In all cases, the first hit was presented as a rare SNV/indel, whereas the second hit was either a different SNV (3 genes) or LOH affecting the same gene (141 genes). BRCA2, BLM, ERCC2, RECQL, REV3L and RIF1 were among the most promising candidate genes for germline CRC predisposition. The identification of new candidate genes involved in familial CRC could be achieved by our integrated analysis. Further functional studies and replication in additional cohorts are required to confirm the selected candidates.

12.
Nat Commun ; 9(1): 4737, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413698

RESUMO

Detecting the genomic changes underlying phenotypic changes between species is a main goal of evolutionary biology and genomics. Evolutionary theory predicts that changes in cis-regulatory elements are important for morphological changes. We combined genome sequencing, functional genomics and genome-wide comparative analyses to investigate regulatory elements in lineages that lost morphological traits. We first show that limb loss in snakes is associated with widespread divergence of limb regulatory elements. We next show that eye degeneration in subterranean mammals is associated with widespread divergence of eye regulatory elements. In both cases, sequence divergence results in an extensive loss of transcription factor binding sites. Importantly, diverged regulatory elements are associated with genes required for normal limb patterning or normal eye development and function, suggesting that regulatory divergence contributed to the loss of these phenotypes. Together, our results show that genome-wide decay of the phenotype-specific cis-regulatory landscape is a hallmark of lost morphological traits.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Variação Genética , Animais , Sítios de Ligação , Sequência Conservada/genética , DNA Intergênico/genética , Extremidades/embriologia , Olho/patologia , Genoma , Lagartos/genética , Mamíferos/genética , Anotação de Sequência Molecular , Fenótipo , Análise de Sequência de DNA , Serpentes/genética , Fatores de Transcrição/metabolismo
13.
Curr Protoc Bioinformatics ; 64(1): e56, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30332532

RESUMO

This unit describes the usage of geneid, an efficient gene-finding program that allows for the analysis of large genomic sequences, including whole mammalian chromosomes. These sequences can be partially annotated, and geneid can be used to refine this initial annotation. Training geneid is relatively easy, and parameter configurations exist for a number of eukaryotic species. geneid produces output in a variety of standard formats. The results, thus, can be processed by a variety of software tools, including visualization programs. geneid software is in the public domain, and is undergoing constant development. It is easy to install and use. Exhaustive benchmark evaluations show that geneid compares favorably with other existing gene-finding tools. © 2018 by John Wiley & Sons, Inc.


Assuntos
Biologia Computacional/métodos , Genes , Software , Processamento Alternativo/genética , Sequência de Aminoácidos , Sequência de Bases , Éxons/genética , Genômica , Guias como Assunto , Íntrons/genética
14.
Front Plant Sci ; 9: 1049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123227

RESUMO

The Cucurbita pepo genome comprises 263 Mb and 34,240 gene models organized in 20 different chromosomes. To improve our understanding of gene function we have generated an EMS mutant platform, consisting of 3,751 independent M2 families. The quality of the collection has been evaluated based on phenotyping and whole-genome re-sequencing (WGS) results. The phenotypic evaluation of the whole platform at seedling stage has demonstrated that the rate of variation for easily observable traits is more than 10%. The percentage of families with albino or chlorotic seedlings exceeded 3%, similar or higher to that found in other EMS collections of cucurbit crops. A rapid screening of the library for triple ethylene response in etiolated seedlings allowed the identification of four ethylene-insensitive mutants, that were found to be semidominant (ein1, ein2, and ein3) or dominant (EIN4). By evaluating 4 adult plants from 300 independent families more than 28% of apparent mutations were found for vegetative and reproductive traits, including plant vigor, leaf size and shape, sex expression and sex determination, and fruit set and development. Two pools of genomic DNA derived from 20 plants of two mutant families were subjected to WGS by using NGS methodology, estimating the density, spectrum, distribution and impact of EMS induced mutation. The number of EMS mutations in the genomes of families L1 and L2 was 1,704 and 859, respectively, which represents a density of 11.8 and 6 mutations per Mb, respectively. As expected, the predominant EMS induced mutations were C > T and G > A transitions (80.3% in L1, and 61% L2), that were found to be randomly distributed along the 20 chromosomes of C. pepo. The mutations were mostly affecting intergenic regions, but 7.9 and 6% of the identified EMS mutations in L1 and L2, respectively, were located in the exome, and 0.4 and 0.2% had a moderate and high putative impact on gene functions. These results provide information regarding the potential use of the obtained mutant platform in the discovery of novel alleles for both functional genomics and Cucurbita breeding by using direct- or reverse-genetic approaches.

15.
Mol Biol Evol ; 33(8): 2135-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222536

RESUMO

The growing number of sequenced genomes allows us now to address a key question in genetics and evolutionary biology: which genomic changes underlie particular phenotypic changes between species? Previously, we developed a computational framework called Forward Genomics that associates phenotypic to genomic differences by focusing on phenotypes that are independently lost in different lineages. However, our previous implementation had three main limitations. Here, we present two new Forward Genomics methods that overcome these limitations by (1) directly controlling for phylogenetic relatedness, (2) controlling for differences in evolutionary rates, and (3) computing a statistical significance. We demonstrate on large-scale simulated data and on real data that both new methods substantially improve the sensitivity to detect associations between phenotypic and genomic differences. We applied these new methods to detect genomic differences involved in the loss of vision in the blind mole rat and the cape golden mole, two independent subterranean mammals. Forward Genomics identified several genes that are enriched in functions related to eye development and the perception of light, as well as genes involved in the circadian rhythm. These new Forward Genomics methods represent a significant advance in our ability to discover the genomic basis underlying phenotypic differences between species. Source code: https://github.com/hillerlab/ForwardGenomics/.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Genômica/métodos , Animais , Sequência de Bases , Simulação por Computador , Evolução Molecular , Especiação Genética , Genótipo , Modelos Genéticos , Taxa de Mutação , Fenótipo , Filogenia
16.
Mol Biol Evol ; 33(6): 1435-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26831942

RESUMO

Balancing selection is an important evolutionary force that maintains genetic and phenotypic diversity in populations. Most studies in humans have focused on long-standing balancing selection, which persists over long periods of time and is generally shared across populations. But balanced polymorphisms can also promote fast adaptation, especially when the environment changes. To better understand the role of previously balanced alleles in novel adaptations, we analyzed in detail four loci as case examples of this mechanism. These loci show hallmark signatures of long-term balancing selection in African populations, but not in Eurasian populations. The disparity between populations is due to changes in allele frequencies, with intermediate frequency alleles in Africans (likely due to balancing selection) segregating instead at low- or high-derived allele frequency in Eurasia. We explicitly tested the support for different evolutionary models with an approximate Bayesian computation approach and show that the patterns in PKDREJ, SDR39U1, and ZNF473 are best explained by recent changes in selective pressure in certain populations. Specifically, we infer that alleles previously under long-term balancing selection, or alleles linked to them, were recently targeted by positive selection in Eurasian populations. Balancing selection thus likely served as a source of functional alleles that mediated subsequent adaptations to novel environments.


Assuntos
Genética Populacional/métodos , Seleção Genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Alelos , Evolução Biológica , Proteínas de Ligação a DNA/genética , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Frequência do Gene , Interação Gene-Ambiente , Variação Genética , Humanos , Receptores de Superfície Celular/genética , Análise de Sequência de DNA/métodos
17.
Mol Biol Evol ; 32(6): 1507-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739735

RESUMO

As humans migrated around the world, they came to inhabit environments that differ widely in the soil levels of certain micronutrients, including selenium (Se). Coupled with cultural variation in dietary practices, these migrations have led to a wide range of Se intake levels in populations around the world. Both excess and deficiency of Se in the diet can have adverse health consequences in humans, with severe Se deficiency resulting in diseases of the bone and heart. Se is required by humans mainly due to its function in selenoproteins, which contain the amino acid selenocysteine as one of their constituent residues. To understand the evolution of the use of this micronutrient in humans, we surveyed the patterns of polymorphism in all selenoprotein genes and genes involved in their regulation in 50 human populations. We find that single nucleotide polymorphisms from populations in Asia, particularly in populations living in the extreme Se-deficient regions of China, have experienced concerted shifts in their allele frequencies. Such differentiation in allele frequencies across genes is not observed in other regions of the world and is not expected under neutral evolution, being better explained by the action of recent positive selection. Thus, recent changes in the use and regulation of Se may harbor the genetic adaptations that helped humans inhabit environments that do not provide adequate levels of Se in the diet.


Assuntos
Adaptação Fisiológica/genética , Dieta , Evolução Molecular , Selênio , Selenoproteínas/genética , China , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Seleção Genética , Selênio/deficiência , Selenocisteína/genética
18.
Mol Biol Evol ; 32(5): 1186-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25605789

RESUMO

Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.


Assuntos
Autoantígenos/genética , Evolução Molecular , Variação Genética , Colágenos não Fibrilares/genética , Seleção Genética , Animais , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pan paniscus , Pan troglodytes , Polimorfismo de Nucleotídeo Único , Colágeno Tipo XVII
19.
Biomed Res Int ; 2014: 282343, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313355

RESUMO

Classically, gene prediction programs are based on detecting signals such as boundary sites (splice sites, starts, and stops) and coding regions in the DNA sequence in order to build potential exons and join them into a gene structure. Although nowadays it is possible to improve their performance with additional information from related species or/and cDNA databases, further improvement at any step could help to obtain better predictions. Here, we present WISCOD, a web-enabled tool for the identification of significant protein coding regions, a novel software tool that tackles the exon prediction problem in eukaryotic genomes. WISCOD has the capacity to detect real exons from large lists of potential exons, and it provides an easy way to use global P value called expected probability of being a false exon (EPFE) that is useful for ranking potential exons in a probabilistic framework, without additional computational costs. The advantage of our approach is that it significantly increases the specificity and sensitivity (both between 80% and 90%) in comparison to other ab initio methods (where they are in the range of 70-75%). WISCOD is written in JAVA and R and is available to download and to run in a local mode on Linux and Windows platforms.


Assuntos
Internet , Fases de Leitura Aberta/genética , Software , Estatística como Assunto , Animais , Cromossomos Humanos Par 9/genética , Simulação por Computador , Bases de Dados de Proteínas , Drosophila melanogaster/metabolismo , Éxons/genética , Humanos , Fator de Transcrição PAX5/genética , Probabilidade , Curva ROC
20.
Proc Natl Acad Sci U S A ; 111(18): 6666-71, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753607

RESUMO

We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.


Assuntos
Exoma , Variação Genética , Homem de Neandertal/genética , Substituição de Aminoácidos , Animais , Croácia , DNA/genética , Frequência do Gene , Humanos , Paleontologia , Filogenia , Polimorfismo de Nucleotídeo Único , Sibéria , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...