Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685004

RESUMO

Switchable mechanically induced changes in the wetting behavior of surfaces are of paramount importance for advanced microfluidic, self-cleaning and biomedical applications. In this work we show that the well-known polydimethylsiloxane (PDMS) elastomer develops self-patterning when it is coated with nanostructured TiO2 films prepared by physical vapor deposition at glancing angles and subsequently subjected to a mechanical deformation. Thus, unlike the disordered wrinkled surfaces typically created by deformation of the bare elastomer, well-ordered and aligned micro-scaled grooves form on TiO2/PDMS after the first post-deposition bending or stretching event. These regularly patterned surfaces can be reversibly modified by mechanical deformation, thereby inducing a switchable and reversible wetting petal effect and the sliding of liquid droplets. When performed in a dynamic way, this mechanical actuation produces a unique capacity of liquid droplets (water and diiodomethane) transport and tweezing, this latter through their selective capture and release depending on their volume and chemical characteristics. Scanning electron and atomic force microscopy studies of the strained samples showed that a dual-scale roughness, a parallel alignment of patterned grooves and their reversible widening upon deformation, are critical factors controlling this singular sliding behavior and the possibility to tailor their response by the appropriate manufacturing of surface structures.

3.
Langmuir ; 31(30): 8294-302, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168350

RESUMO

In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2.

4.
ACS Appl Mater Interfaces ; 7(20): 10993-1001, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25938593

RESUMO

ITO thin films have been prepared by electron beam evaporation at oblique angles (OA), directly and while assisting their growth with a downstream plasma. The films microstructure, characterized by scanning electron microscopy, atomic force microscopy, and glancing incidence small-angle X-ray scattering, consisted of tilted and separated nanostructures. In the plasma assisted films, the tilting angle decreased and the nanocolumns became associated in the form of bundles along the direction perpendicular to the flux of evaporated material. The annealed films presented different in-depth and sheet resistivity as confirmed by scanning conductivity measurements taken for the individual nanocolumns. In addition, for the plasma-assisted thin films, two different sheet resistance values were determined by measuring along the nanocolumn bundles or the perpendicular to it. This in-plane anisotropy induces the electrochemical deposition of elongated gold nanostructures. The obtained Au-ITO composite thin films were characterized by anisotropic plasmon resonance absorption and a dichroic behavior when examined with linearly polarized light.

5.
ACS Appl Mater Interfaces ; 6(15): 11924-31, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25007108

RESUMO

We present a straightforward procedure of self-surface patterning with potential applications as large area gratings, invisible labeling, optomechanical transducers, or smart windows. The methodology is based in the formation of parallel micrometric crack patterns when polydimethylsiloxane foils coated with tilted nanocolumnar SiO2 thin films are manually bent. The SiO2 thin films are grown by glancing angle deposition at room temperature. The results indicate that crack spacing is controlled by the film nanostructure independently of the film thickness and bending curvature. They also show that the in-plane microstructural anisotropy of the SiO2 films due to column association perpendicular to the growth direction determines the anisotropic formation of parallel cracks along two main axes. These self-organized patterned foils are completely transparent and work as customized reversible diffraction gratings under mechanical activation.

6.
ACS Appl Mater Interfaces ; 5(14): 6743-50, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23781881

RESUMO

Porous Bragg microcavities formed by stacking a series of porous nanocolumnar layers with alternate low (SiO2) and high (TiO2) refractive index materials have been prepared by physical vapor deposition at glancing angles (GLAD). By strictly controlling the porosity and refractive index of the individual films, as well as the relative orientation of the nanocolumns from one layer to the next, very porous and nondispersive high optical quality microcavities have been manufactured. These photonic structures have been implemented into responsive devices to characterize liquids, mixtures of liquids, or solutions flowing through them. The large displacements observed in the optical spectral features (Bragg reflector gap and resonant peak) of the photonic structures have been quantitatively correlated by optical modeling with the refractive index of the circulating liquids. Experiments carried out with different glucose and NaCl solutions and mixtures of water plus glycerol illustrate the potentialities of these materials to serve as optofluidic devices to determine the concentration of solutions or the proportion of two phases in a liquid mixture.

7.
Nanotechnology ; 23(20): 205701, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22543422

RESUMO

This paper reports a thorough microstructural characterization of glancing angle deposited (GLAD) TiO(2) thin films. Atomic force microscopy (afm), grazing-incidence small-angle x-ray scattering (GISAXS) and water adsorption isotherms have been used to determine the evolution of porosity and the existence of some correlation distances between the nanocolumns constituting the basic elements of the film's nanostructure. It is found that the deposition angle and, to a lesser extent, the film thickness are the most important parameters controlling properties of the thin film. The importance of porosity and some critical dimensions encountered in the investigated GLAD thin films is highlighted in relation to the analysis of their optical properties when utilized as antireflective coatings or as hosts and templates for the development of new composite materials.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/métodos , Titânio/química , Água/química , Adsorção , Teste de Materiais , Tamanho da Partícula , Porosidade , Estatística como Assunto , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...