Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397397

RESUMO

Holm oak (Quercus ilex) is considered to be one of the major structural elements of Mediterranean forests and the agrosilvopastoral Spanish "dehesa", making it an outstanding example of ecological and socioeconomic sustainability in forest ecosystems. The exotic Phytophthora cinnamomi is one of the most aggressive pathogens of woody species and, together with drought, is considered to be one of the main drivers of holm oak decline. The effect of and response to P. cinnamomi inoculation were studied in the offspring of mother trees from two Andalusian populations, Cordoba and Huelva. At the two locations, acorns collected from both symptomatic (damaged) and asymptomatic (apparently healthy) trees were sampled. Damage symptoms, mortality, and chlorophyll fluorescence were evaluated in seedlings inoculated under humid and drought conditions. The effect and response depended on the population and were more apparent in Huelva than in Cordoba. An integrated proteomic and metabolomic analysis revealed the involvement of different metabolic pathways in response to the pathogen in both populations, including amino acid metabolism pathways in Huelva, and terpenoid and flavonoid biosynthesis in Cordoba. However, no differential response was observed between seedlings inoculated under humid and drought conditions. A protective mechanism of the photosynthetic apparatus was activated in response to defective photosynthetic activity in inoculated plants, which seemed to be more efficient in the Cordoba population. In addition, enzymes and metabolites of the phenylpropanoid and flavonoid biosynthesis pathways may have conferred higher resistance in the Cordoba population. Some enzymes are proposed as markers of resilience, among which glyoxalase I, glutathione reductase, thioredoxin reductase, and cinnamyl alcohol dehydrogenase are candidates.


Assuntos
Phytophthora , Quercus , Ecossistema , Secas , Proteômica , Árvores , Plântula , Flavonoides/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077370

RESUMO

The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.


Assuntos
Quercus , Ecossistema , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Quercus/metabolismo , Árvores
3.
Front Cell Dev Biol ; 10: 890852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573692

RESUMO

Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.

4.
Front Plant Sci ; 12: 722802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490021

RESUMO

Quercus ilex L. is the dominant species in the Mediterranean forest and agrosilvopastoral ecosystem "dehesa." Currently, this forest species is threatened by natural and anthropogenic agents, especially by the decline syndrome, which is caused by Phytophthora cinnamomi and drought periods. Although the morphological and physiological responses of Q. ilex to combined stress (P. cinnamomi and drought) have been examined already, little is known at the molecular level. In this study, we studied the effect and response of 8-month seedlings from three contrasting Andalusian populations (Seville [Se], Granada [Gr], and Almeria [Al]) to the individual and combined stresses of P. cinnamomi and drought from morphological, physiological, biochemical, and proteomics data. Whereas, seedling damage (leaf chlorosis and necrosis) and mortality were greater under the combined stresses in the three populations, the effect of each individual stress was population-dependent. Resilient individuals were found in all the populations at different percentages. The decrease in leaf chlorophyll fluorescence, photosynthetic activity, and stomatal conductance observed in undamaged seedlings was greater in the presence of both stresses, the three populations responding similarly to drought and P. cinnamomi. Biochemical and proteomic analyses of undamaged seedlings from the two most markedly contrasting populations (Se and Al) revealed the absence of significant differences in the contents in photosynthetic pigments, amino acids, and phenolics among treatments. The Se and Al populations exhibited changes in protein profile in response to the different treatments, with 83 variable proteins in the former population and 223 in the latter. Variable proteins belonged to 16 different functional groups, the best represented among which were protein folding, sorting and degradation, carbohydrate, amino acid, and secondary metabolism, photosynthesis, and ROS scavenging. While photosynthetic proteins were mainly downaccumulated, those of stress-responsive were upaccumulated. Although no treatment-specific response was observed in any functional group, differences in abundance were especially marked under the combined stresses. The following variable proteins are proposed as putative markers for resilience in Q. ilex, namely, aldehyde dehydrogenase, glucose-6-phosphate isomerase, 50S ribosomal protein L5, and α-1,4-glucan-protein synthase [UDP-forming].

5.
Science ; 361(6404)2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30139844

RESUMO

The architecture of the neurovascular unit (NVU) is controlled by the communication of neurons, glia, and vascular cells. We found that the neuronal guidance cue reelin possesses proangiogenic activities that ensure the communication of endothelial cells (ECs) with the glia to control neuronal migration and the establishment of the blood-brain barrier in the mouse brain. Apolipoprotein E receptor 2 (ApoER2) and Disabled1 (Dab1) expressed in ECs are required for vascularization of the retina and the cerebral cortex. Deletion of Dab1 in ECs leads to a reduced secretion of laminin-α4 and decreased activation of integrin-ß1 in glial cells, which in turn control neuronal migration and barrier properties of the NVU. Thus, reelin signaling in the endothelium is an instructive and integrative cue essential for neuro-glia-vascular communication.


Assuntos
Comunicação Celular , Córtex Cerebral/irrigação sanguínea , Endotélio Vascular/fisiologia , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Vasos Retinianos/fisiologia , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Endotélio Vascular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Deleção de Genes , Integrina beta1/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Laminina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteína Reelina , Vasos Retinianos/citologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais
6.
Front Cell Neurosci ; 12: 134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867367

RESUMO

In mammalian species, including humans, the hippocampal dentate gyrus (DG) is a primary region of adult neurogenesis. Aberrant adult hippocampal neurogenesis is associated with neurological pathologies. Understanding the cellular mechanisms controlling adult hippocampal neurogenesis is expected to open new therapeutic strategies for mental disorders. Microglia is intimately associated with neural progenitor cells in the hippocampal DG and has been implicated, under varying experimental conditions, in the control of the proliferation, differentiation and survival of neural precursor cells. But the underlying mechanisms remain poorly defined. Using fluorescent in situ hybridization we show that microglia in brain express the ADP-activated P2Y13 receptor under basal conditions and that P2ry13 mRNA is absent from neurons, astrocytes, and neural progenitor cells. Disrupting P2ry13 decreases structural complexity of microglia in the hippocampal subgranular zone (SGZ). But it increases progenitor cell proliferation and new neuron formation. Our data suggest that P2Y13 receptor-activated microglia constitutively attenuate hippocampal neurogenesis. This identifies a signaling pathway whereby microglia, via a nucleotide-mediated mechanism, contribute to the homeostatic control of adult hippocampal neurogenesis. Selective P2Y13R antagonists could boost neurogenesis in pathological conditions associated with impaired hippocampal neurogenesis.

7.
Gene Expr Patterns ; 21(2): 69-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27521061

RESUMO

Homeodomain proteins are encoded by homeobox genes and regulate development and differentiation in many neuronal systems. The mouse vomeronasal organ (VNO) generates in situ mature chemosensory neurons from stem cells. The roles of homeodomain proteins in neuronal differentiation in the VNO are poorly understood. Here we have characterized the expression patterns of 28 homeobox genes in the VNO of C57BL/6 mice at postnatal stages using multicolor fluorescent in situ hybridization. We identified 11 homeobox genes (Dlx3, Dlx4, Emx2, Lhx2, Meis1, Pbx3, Pknox2, Pou6f1, Tshz2, Zhx1, Zhx3) that were expressed exclusively in neurons; 4 homeobox genes (Pax6, Six1, Tgif1, Zfhx3) that were expressed in all non-neuronal cell populations, with Pax6, Six1 and Tgif1 also expressed in some neuronal progenitors and precursors; 12 homeobox genes (Adnp, Cux1, Dlx5, Dlx6, Meis2, Pbx2, Pknox1, Pou2f1, Satb1, Tshz1, Tshz3, Zhx2) with expression in both neuronal and non-neuronal cell populations; and one homeobox gene (Hopx) that was exclusively expressed in the non-sensory epithelium. We studied further in detail the expression of Emx2, Lhx2, Meis1, and Meis2. We found that expression of Emx2 and Lhx2 initiated between neuronal progenitor and neuronal precursor stages. As far as the sensory neurons of the VNO are concerned, Meis1 and Meis2 were only expressed in the apical layer, together with Gnai2, but not in the basal layer.


Assuntos
Proteínas de Homeodomínio/biossíntese , Proteínas com Homeodomínio LIM/biossíntese , Proteínas de Neoplasias/biossíntese , Fatores de Transcrição/biossíntese , Órgão Vomeronasal/metabolismo , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/isolamento & purificação , Proteínas com Homeodomínio LIM/genética , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/genética , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Órgão Vomeronasal/crescimento & desenvolvimento
8.
J Comp Neurol ; 524(14): 2713-39, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27243442

RESUMO

Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Genes Homeobox/fisiologia , Mucosa Olfatória/metabolismo , Fatores Etários , Animais , Feminino , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa Olfatória/química , Mucosa Olfatória/citologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
9.
PLoS One ; 11(5): e0154703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149509

RESUMO

The mammalian central nervous system (CNS) is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP), as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes.


Assuntos
Disco Óptico/metabolismo , Retina/metabolismo , Fatores de Transcrição SOXE/metabolismo , Animais , Proliferação de Células , Carpa Dourada , Oligodendroglia/metabolismo , Disco Óptico/patologia , Retina/patologia
10.
PLoS One ; 11(1): e0144698, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794459

RESUMO

BACKGROUND: In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. AIM: Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. PROCEDURES: Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. RESULTS: In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice.


Assuntos
Regiões Promotoras Genéticas , Receptores Odorantes/genética , Animais , Sítios de Ligação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa Olfatória/fisiologia , Pseudogenes , Ratos , Transcriptoma
11.
Cell Transplant ; 24(12): 2423-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695936

RESUMO

Clinical trials have assessed the use of human bone marrow stromal cells (hBMSCs) for the treatment of immune-related disorders such as graft-versus-host disease (GVHD). In the current study, we show that GFP(+)-transduced hBMSCs generated from bone marrow migrate and differentiate into corneal tissue after subconjunctival injection in mice. Interestingly, these hBMSCs display morphological features of epithelial, stromal, and endothelial cells and appear at different layers and with different morphologies depending on their position within the epithelium. Furthermore, these cells display ultrastructural properties, such as bundles of intermediate filaments, interdigitations, and desmosomes with GFP(-) cells, which confirms their differentiation into corneal tissues. GFP(+)-transduced hBMSCs were injected at different time points into the right eye of lethally irradiated mice undergoing bone marrow transplantation, which developed ocular GVHD (oGVHD). Remarkably, hBMSCs massively migrate to corneal tissues after subconjunctival injection. Both macroscopic and histopathological examination showed minimal or no evidence of GVHD in the right eye, while the left eye, where no hBMSCs were injected, displayed features of GVHD. Thus, in the current study, we confirm that hBMSCs may induce their therapeutic effect at least in part by differentiation and regeneration of damaged tissues in the host. Our results provide experimental evidence that hBMSCs represent a potential cellular therapy to attenuate oGVHD.


Assuntos
Células da Medula Óssea/citologia , Córnea/citologia , Transplante de Córnea/efeitos adversos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Adulto , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Doença Enxerto-Hospedeiro/terapia , Proteínas de Fluorescência Verde , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
12.
PLoS One ; 7(2): e32348, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384226

RESUMO

The Pax2 transcription factor plays a crucial role in axon-guidance and astrocyte differentiation in the optic nerve head (ONH) during vertebrate visual system development. However, little is known about its function during regeneration. The fish visual system is in continuous growth and can regenerate. Müller cells and astrocytes of the retina and ONH play an important role in these processes. We demonstrate that pax2a in goldfish is highly conserved and at least two pax2a transcripts are expressed in the optic nerve. Moreover, we show two different astrocyte populations in goldfish: Pax2(+) astrocytes located in the ONH and S100(+) astrocytes distributed throughout the retina and the ONH. After peripheral growth zone (PGZ) cryolesion, both Pax2(+) and S100(+) astrocytes have different responses. At 7 days after injury the number of Pax2(+) cells is reduced and coincides with the absence of young axons. In contrast, there is an increase of S100(+) astrocytes in the retina surrounding the ONH and S100(+) processes in the ONH. At 15 days post injury, the PGZ starts to regenerate and the number of S100(+) astrocytes increases in this region. Moreover, the regenerating axons reach the ONH and the pax2a gene expression levels and the number of Pax2(+) cells increase. At the same time, S100(+)/GFAP(+)/GS(+) astrocytes located in the posterior ONH react strongly. In the course of the regeneration, Müller cell vitreal processes surrounding the ONH are primarily disorganized and later increase in number. During the whole regenerative process we detect a source of Pax2(+)/PCNA(+) astrocytes surrounding the posterior ONH. We demonstrate that pax2a expression and the Pax2(+) astrocyte population in the ONH are modified during the PGZ regeneration, suggesting that they could play an important role in this process.


Assuntos
Perfilação da Expressão Gênica , Nervo Óptico/metabolismo , Fator de Transcrição PAX2/metabolismo , Retina/fisiologia , Animais , Astrócitos/citologia , Sequência de Bases , Proliferação de Células , Regulação da Expressão Gênica , Carpa Dourada , Imuno-Histoquímica/métodos , Modelos Biológicos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Regeneração , Proteínas S100/metabolismo
13.
Brain Res ; 1255: 75-88, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19109934

RESUMO

Pax2 is a well known transcription factor which participates in optic nerve development. It assures the correct arrival and package of the newly formed retinal axons and the adequate differentiation of the newly formed glial cells. Pax2 protein expression is continuous throughout adult life in the goldfish optic nerve. We have found two populations of astrocytes in the optic nerve: Pax2(+) and Pax2(-). Moreover, we have observed that the Pax2(+) astrocytes from the optic nerve head present differences in number and organization to those of the rest of the optic nerve. In the optic nerve head some Pax2(+) astrocytes, principally localized in the glia limitans, have thin GFAP(+) processes and weak cytokeratin and ZO1 immunolabeling. Several Pax2(+) astrocytes are in close association with the GFAP(+)/GS(+) Müller cell vitreal processes and with the growing Zn8(+) retinal ganglion cell axons. However, in the intraorbital segment, Pax2(+) astrocytes are more numerous and they have strongly cytokeratin(+)/ZO1(+) processes and form part of the reticular astrocytes and the glia limitans. We also found Pax2(-) astrocytes in both the optic nerve head and the intraorbital segment. In the intraorbital segment there are GS(+)/Pax2(-) cells which are absent from the optic nerve head. We propose that the maintenance of Pax2 protein expression in adult goldfish optic nerve could be related to the continuous addition of new ganglion cell axons and new glial cells.


Assuntos
Astrócitos/metabolismo , Regeneração Nervosa/fisiologia , Disco Óptico/crescimento & desenvolvimento , Fator de Transcrição PAX2/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Proteína Glial Fibrilar Ácida/metabolismo , Carpa Dourada , Imuno-Histoquímica , Modelos Biológicos , Disco Óptico/citologia , Disco Óptico/metabolismo , Fator de Transcrição PAX2/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia
14.
Brain Res ; 1127(1): 163-76, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17113047

RESUMO

We analyzed the modifications of the retinal neurons in a heterozygous mutant small eye mouse, the Sey(Dey). This mouse presents a mutation in chromosome 2 which affects the gene Pax6 and other nearby genes, such as the Wt1 gene and the gene of the Reticulocalbin. The eyes of these animals do not have lenses and their retinas present important morphological alterations: in the anterior portion they are joined to the cornea, they are found detached from the pigment epithelium, they present folds that form rosettes in some zones and alteration of the lamination can be observed. The partial loss of the genes affected does not prevent the formation of the different layers of the retina, but does affect its thickness, principally of the plexiform layers; moreover, the internal limiting membrane is found disorganized. All the neuronal populations are present in the retina of these animals and express the same neurochemical markers as the control animals, but the number of Pax6(+) cells is notably reduced. In these retinas a marked disorganization of the distribution of the dendrites and axons is observed and a notable reduction in the axons of ganglion cells. These results suggest that, although it does not appear determinant in the differentiation of the distinct neuronal types of the retina, the partial lack of genes of the heterozygotes +/Sey(Dey) provokes important morphological and neurochemical modifications in the cytoarchitecture of the retina.


Assuntos
Anormalidades do Olho/patologia , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Neurônios/patologia , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Retina/anormalidades , Animais , Axônios/metabolismo , Axônios/patologia , Biomarcadores/metabolismo , Calbindina 2 , Calbindinas , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Neurônios/metabolismo , Fator de Transcrição PAX6 , Parvalbuminas/genética , Proteína Quinase C-alfa/genética , Retina/metabolismo , Retina/fisiopatologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteína G de Ligação ao Cálcio S100/genética , Tirosina 3-Mono-Oxigenase/genética , Proteínas WT1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...