Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062048

RESUMO

Transplanted organs experience several episodes of ischemia and ischemia-reperfusion. The graft injury resulting from ischemia-reperfusion (IRI) remains a significant obstacle to the successful survival of transplanted grafts. Temperature significantly influences cellular metabolic rates because biochemical reactions are highly sensitive to temperature changes. Consequently, lowering the temperature could reduce the degradative reactions triggered by ischemia. In mitigating IRI in liver grafts, the potential protective effect of localized hypothermia on the liver prior to blood flow obstruction has yet to be explored. In this study, we applied local hypothermia to mouse donor livers for a specific duration before stopping blood flow to liver lobes, a procedure called "liver precooling". Mouse donor liver temperature in control groups was controlled at 37 °C. Subsequently, the liver donors were preserved in cold University of Wisconsin solution for various durations followed by orthotopic liver transplantation. Liver graft injury, function and inflammation were assessed at 1 and 2 days post-transplantation. Liver precooling exhibited a significant improvement in graft function, revealing more than a 47% decrease in plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, coupled with a remarkable reduction of approximately 50% in liver graft histological damage compared to the control group. The protective effects of liver precooling were associated with the preservation of mitochondrial function, a substantial reduction in hepatocyte cell death, and a significantly attenuated inflammatory response. Taken together, reducing the cellular metabolism and enzymatic activity to a minimum level before ischemia protects against IRI during transplantation.

2.
Kidney Blood Press Res ; 49(1): 173-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350434

RESUMO

INTRODUCTION: Renal function may be compromised following recovery from kidney insults. Renal functional reserve (RFR) is a measure of the difference between the kidney's maximum capacity and its baseline function, which helps identify any areas of the kidney with compromised function. Usually, RFR is evaluated using acute volume expansion (AVE), but this is typically done in anesthetized animals, which may not accurately represent the kidney's complete functional capacity. In this study, we have introduced a novel method that enables AVE to be conducted in conscious mice. METHODS: We have implemented this innovative approach in two animal models representing either intact or impaired renal function, specifically utilizing a lower nephron hypertensive model. Mice were implanted with radio-transmitters for mean artery blood pressure (MAP) monitoring during the experiment. After recovery, half of the mice were induced hypertension by right kidney nephrectomy combined with the ligation of the upper branch of the left kidney. For the AVE, a volume equivalent to 5% of the mouse's body weight was administered via intravenous (IV) or intraperitoneal bolus injection. Subsequently, the mice were individually housed in cages covered with plastic wrap. Urine was collected every hour for a total of 3 h for the measurement of urine and sodium excretion. RESULTS: The MAPs for all normotensive mice were consistent throughout the AVE, but it increased 5-16 mm Hg in the hypertensive mice upon AVE. Remarkably, conscious mice exhibited a significantly stronger response to IV-administered AVE when compared to anesthetized mice. This response was evident in the increase in urinary flow, which was approximately 170% and 145% higher in conscious normotensive and hypertensive mice, respectively, compared to their respective baselines. In contrast, anesthetized normotensive and hypertensive mice showed only around a 130% and 100% increase in urinary flow, respectively. Additionally, upon AVE, conscious normotensive mice excreted approximately 47% more sodium than conscious hypertensive mice. In contrast, anesthetized normotensive mice excreted only about 30% more sodium than their anesthetized hypertensive counterparts. CONCLUSION: Performing a kidney stress test with a significant solution load in conscious mice seems to be a superior method for evaluating RFR compared to conducting the test under anesthesia. Assessing kidney clearance while the mice are conscious has the potential to enhance the precision of diagnosing and predicting both acute and chronic kidney diseases.


Assuntos
Hipertensão , Rim , Animais , Camundongos , Rim/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/etiologia , Hemodinâmica , Pressão Sanguínea/fisiologia , Estado de Consciência , Modelos Animais de Doenças , Masculino
3.
Discov Med ; 35(177): 525-532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553306

RESUMO

BACKGROUND: The function of macula densa nitric oxide synthase 1 (NOS1) in the regulation of renin release is controversial. This study was conducted to further elucidate the role of macula densa NOS1 in renin release and blood pressure regulation in response to salt challenges and hemorrhagic shock. METHODS: To investigate the specific role of NOS1 in the macula densa within the kidney in response to varying sodium concentrations in the diet, tissue macula densa-specific NOS1 knockout (MD-NOS1KO) and wild type (WT) mice were subjected to sequential low (0.1% NaCl) and high (1.4% NaCl) sodium diets. Separate groups of mice, consisting of both MD-NOS1KO subgroup and WT subgroup, were induced hemorrhagic shock by retro-orbital bleeding of 12 mL blood/kg body weight. Mean arterial pressure (MAP) was measured by a radio-telemetry system. Plasma renin concentration (PRC) was measured with the radioimmunoassay for both sodium diet and hemorrhagic shock experiments. RESULTS: PRCs were 371 ± 95 and 411 ± 68 ng/mL/hr in WT and MD-NOS1KO mice fed a normal sodium diet, respectively. Low salt intake stimulated an increase in the renin release by about 260% in WT mice (PRC = 1364 ± 217 ng/mL/hr, p < 0.0001) compared to the PRC under normal salt diet. However, the stimulation was significantly blunted in MD-NOS1KO mice (PRC = 678 ± 104 ng/mL/hr, p < 0.001). High salt intake suppressed the PRC to about 61% of the PRC level under a normal salt diet (p < 0.0001). Deletion of macula densa NOS1 further inhibited renin release to 33% of the levels of a normal salt diet. Hemorrhagic shock induced about a 3-fold increase in PRC in WT mice, but only about a 54% increase in the MD-NOS1KO mice (p < 0.0001). The MAP values were substantially greater in WT mice than in MD-NOS1KO mice within the first 6 hours following hemorrhagic shock (p < 0.001). Thus, WT mice showed a much quicker recovery in MAP than MD-NOS1KO mice. CONCLUSIONS: Our study demonstrated that macula densa NOS1 plays an important role in mediating renin release. This mechanism is essential in maintaining blood pressure under hypovolemic situations such as hemorrhagic shock.


Assuntos
Renina , Choque Hemorrágico , Camundongos , Animais , Pressão Sanguínea , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA