Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 988227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339045

RESUMO

The spectral quality of sunlight reaching plants remains a path for optimization in greenhouse cultivation. Quantum dots represent a novel, emission-tunable luminescent material for optimizing the sunlight spectrum in greenhouses with minimal intensity loss, ultimately enabling improved light use efficiency of plant growth without requiring electricity. In this study, greenhouse films containing CuInS2/ZnS quantum dots were utilized to absorb and convert ultraviolet and blue photons from sunlight to a photoluminescent emission centered at 600 nm. To analyze the effects of the quantum dot film spectrum on plant production, a 25-week tomato trial was conducted in Dutch glass greenhouses. Plants under the quantum dot film experienced a 14% reduction in overall daily light integral, resulting from perpendicular photosynthetically active radiation transmission of 85.3%, mainly due to reflection losses. Despite this reduction in intensity, the modified sunlight spectrum and light diffusion provided by the quantum dot film gave rise to 5.7% improved saleable production yield, nearly identical total fruiting biomass production, 23% higher light use efficiency (g/mol), 10% faster vegetative growth rate, and 36% reduced tomato waste compared to the control, which had no additional films. Based on this result, materials incorporating quantum dots show promise in enabling passive, electricity-free spectrum modification for improving crop production in greenhouse cultivation, but extensive controlled crop studies are needed to further validate their effectiveness.

2.
Commun Biol ; 4(1): 124, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504914

RESUMO

Bioregenerative life-support systems (BLSS) involving plants will be required to realize self-sustaining human settlements beyond Earth. To improve plant productivity in BLSS, the quality of the solar spectrum can be modified by lightweight, luminescent films. CuInS2/ZnS quantum dot (QD) films were used to down-convert ultraviolet/blue photons to red emissions centered at 600 and 660 nm, resulting in increased biomass accumulation in red romaine lettuce. All plant growth parameters, except for spectral quality, were uniform across three production environments. Lettuce grown under the 600 and 660 nm-emitting QD films respectively increased edible dry mass (13 and 9%), edible fresh mass (11% each), and total leaf area (8 and 13%) compared with under a control film containing no QDs. Spectral modifications by the luminescent QD films improved photosynthetic efficiency in lettuce and could enhance productivity in greenhouses on Earth, or in space where, further conversion is expected from greater availability of ultraviolet photons.


Assuntos
Produtos Agrícolas , Ambiente Controlado , Lactuca , Pontos Quânticos , Espectro de Ação/métodos , Espectro de Ação/normas , Biofortificação/métodos , Calibragem , Cobre/química , Produtos Agrícolas/química , Produtos Agrícolas/efeitos da radiação , Radiação Eletromagnética , Humanos , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Lactuca/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Melhoria de Qualidade , Pontos Quânticos/química , Atividade Solar , Sulfetos/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...