Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464194

RESUMO

Impaired spinal cord vascular function contributes to numerous neurological pathologies, making it important to be able to noninvasively characterize these changes. Here, we propose a functional magnetic resonance imaging (fMRI)-based method to map spinal cord vascular reactivity (SCVR). We used a hypercapnic breath-holding task, monitored with end-tidal CO2 (PETCO2), to evoke a systemic vasodilatory response during concurrent blood oxygenation level-dependent (BOLD) fMRI. SCVR amplitude and hemodynamic delay were mapped at the group level in 27 healthy participants as proof-of-concept of the approach, and then in two highly-sampled participants to probe feasibility/stability of individual SCVR mapping. Across the group and the highly-sampled individuals, a strong ventral SCVR amplitude was initially observed without accounting for local regional variation in the timing of the vasodilatory response. Shifted breathing traces (PETCO2) were used to account for temporal differences in the vasodilatory response across the spinal cord, producing maps of SCVR delay. These delay maps reveal an earlier ventral and later dorsal response and demonstrate distinct gray matter regions concordant with territories of arterial supply. The SCVR fMRI methods described here enable robust mapping of spatiotemporal hemodynamic properties of the human spinal cord. This noninvasive approach has exciting potential to provide early insight into pathology-driven vascular changes in the cord, which may precede and predict future irreversible tissue damage and guide the treatment of several neurological pathologies involving the spine.

2.
Clin Neurophysiol ; 158: 79-91, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38198874

RESUMO

OBJECTIVE: The goal of this pilot study was to understand how focal transcranial direct current stimulation (tDCS) targeting auditory cortex changes brain function in chronic tinnitus using magnetic resonance imaging (MRI). METHODS: People with chronic tinnitus were randomized to active or sham tDCS on five consecutive days in this mechanistic trial (n = 10/group). Focal 4x1 tDCS (central anode, surround cathodes) targeted left auditory cortex, with single-blind 2 mA current during twenty-minute sessions. Arterial spin-labeled and blood oxygenation level dependent MRI occurred immediately before and after the first tDCS session, and tinnitus symptoms were measured starting one week before the first tDCS session and through four weeks after the final session. RESULTS: Acute increases in cerebral blood flow and functional connectivity were noted in auditory cortex after the first active tDCS session. Reduced tinnitus loudness ratings after the final tDCS session correlated with acute change in functional connectivity between an auditory network and mediodorsal thalamus and prefrontal cortex. Reduced tinnitus intrusiveness also correlated with acute change in connectivity between precuneus and an auditory network. CONCLUSIONS: Focal auditory-cortex tDCS can influence function in thalamus, auditory, and prefrontal cortex, which may associate with improved tinnitus. SIGNIFICANCE: With future refinement, tDCS targeting auditory cortex could become a viable intervention for tinnitus.


Assuntos
Córtex Auditivo , Zumbido , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Auditivo/diagnóstico por imagem , Projetos Piloto , Método Simples-Cego , Córtex Pré-Frontal/diagnóstico por imagem , Método Duplo-Cego
3.
Hum Brain Mapp ; 44(17): 5567-5581, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37608682

RESUMO

Upper extremity motor paradigms during spinal cord functional magnetic resonance imaging (fMRI) can provide insight into the functional organization of the cord. Hand-grasping is an important daily function with clinical significance, but previous studies of similar squeezing movements have not reported consistent areas of activity and are limited by sample size and simplistic analysis methods. Here, we study spinal cord fMRI activation using a unimanual isometric hand-grasping task that is calibrated to participant maximum voluntary contraction (MVC). Two task modeling methods were considered: (1) a task regressor derived from an idealized block design (Ideal) and (2) a task regressor based on the recorded force trace normalized to individual MVC (%MVC). Across these two methods, group motor activity was highly lateralized to the hemicord ipsilateral to the side of the task. Activation spanned C5-C8 and was primarily localized to the C7 spinal cord segment. Specific differences in spatial distribution are also observed, such as an increase in C8 and dorsal cord activity when using the %MVC regressor. Furthermore, we explored the impact of data quantity and spatial smoothing on sensitivity to hand-grasp motor task activation. This analysis shows a large increase in number of active voxels associated with the number of fMRI runs, sample size, and spatial smoothing, demonstrating the impact of experimental design choices on motor activation.


Assuntos
Atividade Motora , Medula Espinal , Humanos , Atividade Motora/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Extremidade Superior/fisiologia , Força da Mão
4.
Brain Sci ; 13(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37509021

RESUMO

Functional activation leads to an increase in local brain temperature via an increase in local perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged using infrared thermography such that the activated brain areas are inferred. While it is known that temperature increases as a result of activation, a quantitative spatiotemporal description has yet to be achieved. A novel intraoperative infrared thermography device with data collection software was developed to isolate the thermal impulse response function. Device performance was validated using data from six patients undergoing awake craniotomy who participated in motor and sensory mapping tasks during infrared imaging following standard mapping with direct electrical stimulation. Shared spatiotemporal patterns of cortical temperature changes across patients were identified using group principal component analysis. Analysis of component time series revealed a thermal activation peak present across all patients with an onset delay of five seconds and a peak duration of ten seconds. Spatial loadings were converted to a functional map which showed strong correspondence to positive stimulation results for similar tasks. This component demonstrates the presence of a previously unknown impulse response function for functional mapping with infrared thermography.

5.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502874

RESUMO

Objective: The goal of this pilot MRI study was to understand how focal transcranial direct current stimulation (tDCS) targeting auditory cortex changes brain function in chronic tinnitus. Methods: People with chronic tinnitus were randomized to active or sham tDCS on five consecutive days in this pilot mechanistic trial (n=10/group). Focal 4×1 tDCS (central anode, surround cathodes) targeted left auditory cortex, with single-blind 2mA current during twenty-minute sessions. Arterial spin-labeled and blood oxygenation level dependent MRI occurred immediately before and after the first tDCS session, and tinnitus symptoms were measured starting one week before the first tDCS session and through four weeks after the final session. Results: Acute increases in cerebral blood flow and functional connectivity were noted in auditory cortex after the first active tDCS session. Reduced tinnitus loudness ratings after the final tDCS session correlated with acute change in functional connectivity between an auditory network and mediodorsal thalamus and prefrontal cortex. Reduced tinnitus intrusiveness also correlated with acute change in connectivity between precuneus and an auditory network. Conclusions: Focal auditory-cortex tDCS can influence function in thalamus, auditory, and prefrontal cortex, which may associate with improved tinnitus. Significance: With future refinement, noninvasive brain stimulation targeting auditory cortex could become a viable intervention for tinnitus.

6.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503173

RESUMO

Upper extremity motor paradigms during spinal cord functional magnetic resonance imaging (fMRI) can provide insight into the functional organization of the cord. Hand-grasping is an important daily function with clinical significance, but previous studies of similar squeezing movements have not reported consistent areas of activity and are limited by sample size and simplistic analysis methods. Here, we study spinal cord fMRI activation using a unimanual isometric hand-grasping task that is calibrated to participant maximum voluntary contraction (MVC). Two task modeling methods were considered: (1) a task regressor derived from an idealized block design (Ideal) and (2) a task regressor based on the recorded force trace normalized to individual MVC (%MVC). Across these two methods, group motor activity was highly lateralized to the hemicord ipsilateral to the side of the task. Activation spanned C5-C8 and was primarily localized to the C7 spinal cord segment. Specific differences in spatial distribution are also observed, such as an increase in C8 and dorsal cord activity when using the %MVC regressor. Furthermore, we explored the impact of data quantity and spatial smoothing on sensitivity to hand-grasp motor task activation. This analysis shows a large increase in number of active voxels associated with the number of fMRI runs, sample size, and spatial smoothing, demonstrating the impact of experimental design choices on motor activation.

7.
Neuroimage Rep ; 3(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169013

RESUMO

Individuals with acute and chronic traumatic brain injury (TBI) are associated with unique white matter (WM) structural abnormalities, including fractional anisotropy (FA) differences. Our research group previously used FA as a feature in a linear support vector machine (SVM) pattern classifier, observing high classification between individuals with and without acute TBI (i.e., an area under the curve [AUC] value of 75.50%). However, it is not known whether FA could similarly classify between individuals with and without history of chronic TBI. Here, we attempted to replicate our previous work with a new sample, investigating whether FA could similarly classify between incarcerated men with (n = 80) and without (n = 80) self-reported history of chronic TBI. Additionally, given limitations associated with FA, including underestimation of FA values in WM tracts containing crossing fibers, we extended upon our previous study by incorporating neurite orientation dispersion and density imaging (NODDI) metrics, including orientation dispersion (ODI) and isotropic volume (Viso). A linear SVM based classification approach, similar to our previous study, was incorporated here to classify between individuals with and without self-reported chronic TBI using FA and NODDI metrics as separate features. Overall classification rates were similar when incorporating FA and NODDI ODI metrics as features (AUC: 82.50%). Additionally, NODDI-based metrics provided the highest sensitivity (ODI: 85.00%) and specificity (Viso: 82.50%) rates. The current study serves as a replication and extension of our previous study, observing that multiple diffusion MRI metrics can reliably classify between individuals with and without self-reported history of chronic TBI.

8.
Int J Comput Assist Radiol Surg ; 18(12): 2223-2231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37222929

RESUMO

PURPOSE: Intraoperative infrared thermography is an emerging technique for image-guided neurosurgery, whereby physiological and pathological processes result in temperature changes over space and time. However, motion during data collection leads to downstream artifacts in thermography analyses. We develop a fast, robust technique for motion estimation and correction as a preprocessing step for brain surface thermography recordings. METHODS: A motion correction technique for thermography was developed which approximates the deformation field associated with motion as a grid of two-dimensional bilinear splines (Bispline registration), and a regularization function was designed to constrain motion to biomechanically feasible solutions. The performance of the proposed Bispline registration technique was compared to phase correlation, a band-stop filter, demons registration, and the Horn-Schunck and Lucas-Kanade optical flow techniques. RESULTS: All methods were analyzed using thermography data from ten patients undergoing awake craniotomy for brain tumor resection, and performance was compared using image quality metrics. The proposed method had the lowest mean-squared error and the highest peak-signal-to-noise ratio of all methods tested and performed slightly worse than phase correlation and Demons registration on the structural similarity index metric (p < 0.01, Wilcoxon signed-rank test). Band-stop filtering and the Lucas-Kanade method were not strong attenuators of motion, while the Horn-Schunck method was well-performing initially but weakened over time. CONCLUSION: Bispline registration had the most consistently strong performance out of all the techniques tested. It is relatively fast for a nonrigid motion correction technique, capable of processing ten frames per second, and could be a viable option for real-time use. Constraining the deformation cost function through regularization and interpolation appears sufficient for fast, monomodal motion correction of thermal data during awake craniotomy.


Assuntos
Termografia , Vigília , Humanos , Movimento (Física) , Razão Sinal-Ruído , Craniotomia , Artefatos , Algoritmos
9.
Front Neurol ; 13: 907581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341092

RESUMO

Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC) is a unique non-invasive method for characterizing neurovascular responses to stimuli. Group-analysis of SC fMRI data involves co-registration of subject-level data to standard space, which requires manual masking of the cord and may result in bias of group-level SC fMRI results. To test this, we examined variability in SC masks drawn in fMRI data from 21 healthy participants from a completed study mapping responses to sensory stimuli of the C7 dermatome. Masks were drawn on temporal mean functional image by eight raters with varying levels of neuroimaging experience, and the rater from the original study acted as a reference. Spatial agreement between rater and reference masks was measured using the Dice Similarity Coefficient, and the influence of rater and dataset was examined using ANOVA. Each rater's masks were used to register functional data to the PAM50 template. Gray matter-white matter signal contrast of registered functional data was used to evaluate the spatial normalization accuracy across raters. Subject- and group-level analyses of activation during left- and right-sided sensory stimuli were performed for each rater's co-registered data. Agreement with the reference SC mask was associated with both rater (F(7, 140) = 32.12, P < 2 × 10-16, η2 = 0.29) and dataset (F(20, 140) = 20.58, P < 2 × 10-16, η2 = 0.53). Dataset variations may reflect image quality metrics: the ratio between the signal intensity of spinal cord voxels and surrounding cerebrospinal fluid was correlated with DSC results (p < 0.001). As predicted, variability in the manually-drawn masks influenced spatial normalization, and GM:WM contrast in the registered data showed significant effects of rater and dataset (rater: F(8, 160) = 23.57, P < 2 × 10-16, η2 = 0.24; dataset: F(20, 160) = 22.00, P < 2 × 10-16, η2 = 0.56). Registration differences propagated into subject-level activation maps which showed rater-dependent agreement with the reference. Although group-level activation maps differed between raters, no systematic bias was identified. Increasing consistency in manual contouring of spinal cord fMRI data improved co-registration and inter-rater agreement in activation mapping, however our results suggest that improvements in image acquisition and post-processing are also critical to address.

10.
Sci Rep ; 12(1): 17760, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273036

RESUMO

The relationship of human brain structure to cognitive function is complex, and how this relationship differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex. In this work, we developed a novel graph convolutional neural networks (gCNNs) for the analysis of localized anatomic shape and prediction of Gf. Morphologic information of the cortical ribbons and subcortical structures was extracted from T1-weighted MRIs within two independent cohorts, the Adolescent Brain Cognitive Development Study (ABCD; age: 9.93 ± 0.62 years) of children and the Human Connectome Project (HCP; age: 28.81 ± 3.70 years). Prediction combining cortical and subcortical surfaces together yielded the highest accuracy of Gf for both ABCD (R = 0.314) and HCP datasets (R = 0.454), outperforming the state-of-the-art prediction of Gf from any other brain measures in the literature. Across both datasets, the morphology of the amygdala, hippocampus, and nucleus accumbens, along with temporal, parietal and cingulate cortex consistently drove the prediction of Gf, suggesting a significant reframing of the relationship between brain morphology and Gf to include systems involved with reward/aversion processing, judgment and decision-making, motivation, and emotion.


Assuntos
Conectoma , Aprendizado Profundo , Adolescente , Criança , Humanos , Adulto , Inteligência , Imageamento por Ressonância Magnética , Encéfalo/anatomia & histologia
11.
Cortex ; 155: 90-106, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985126

RESUMO

Inconsistent findings have been reported about the impact of structural disconnections on language function in post-stroke aphasia. This study investigated patterns of structural disconnections associated with chronic language impairments using disconnectome maps. Seventy-six individuals with post-stroke aphasia underwent a battery of language assessments and a structural MRI scan. Support-vector regression disconnectome-symptom mapping analyses were performed to examine the correlations between disconnectome maps, representing the probability of disconnection at each white matter voxel and different language scores. To further understand whether significant disconnections were primarily representing focal damage or a more extended network of seemingly preserved but disconnected areas beyond the lesion site, results were qualitatively compared to support-vector regression lesion-symptom mapping analyses. Part of the left white matter perisylvian network was similarly disconnected in 90% of the individuals with aphasia. Surrounding this common left perisylvian disconnectome, specific structural disconnections in the left fronto-temporo-parietal network were significantly associated with aphasia severity and with lower performance in auditory comprehension, syntactic comprehension, syntactic production, repetition and naming tasks. Auditory comprehension, repetition and syntactic processing deficits were related to disconnections in areas that overlapped with and extended beyond lesion sites significant in SVR-LSM analyses. In contrast, overall language abilities as measured by aphasia severity and naming seemed to be mostly explained by focal damage at the level of the insular and central opercular cortices, given the high overlap between SVR-DSM and SVR-LSM results for these scores. While focal damage seems to be sufficient to explain broad measures of language performance, the structural disconnections between language areas provide additional information on the neural basis of specific and persistent language impairments at the chronic stage beyond lesion volume. Leveraging routinely available clinical data, disconnectome mapping furthers our understanding of anatomical connectivity constraints that may limit the recovery of some language abilities in chronic post-stroke aphasia.


Assuntos
Afasia , Transtornos do Desenvolvimento da Linguagem , Substância Branca , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Substância Branca/patologia
12.
Brain Lang ; 232: 105163, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921727

RESUMO

While previous studies have found that white matter damage relates to impairment severity in individuals with aphasia, further study is required to understand the relationship between white matter integrity and treatment response. In this study, 34 individuals with chronic post-stroke aphasia underwent behavioral testing and structural magnetic resonance imaging at two timepoints. Thirty participants within this sample completed typicality-based semantic feature treatment for anomia. Tractography of bi-hemispheric white matter tracts was completed via Automated Fiber Quantification. Associations between microstructural integrity metrics and behavioral measures were evaluated at the tract level and in nodes along the tract. Diffusion measures of the left inferior longitudinal, superior longitudinal, and arcuate fasciculi were related to aphasia severity and diffusion measures of the left inferior longitudinal fasciculus were related to naming and treatment response. This study also found preliminary evidence of left inferior longitudinal fasciculus microstructural changes following treatment.


Assuntos
Afasia , Substância Branca , Anomia/patologia , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/terapia , Imagem de Tensor de Difusão , Humanos , Rede Nervosa , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
13.
Neurobiol Lang (Camb) ; 3(2): 345-363, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35685084

RESUMO

Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments in chronic aphasia, particularly in perilesional tissue. Abnormal perfusion in this region may also serve as a biomarker for predicting functional improvements with behavioral treatment interventions. Using pseudo-continuous arterial spin labeling in magnetic resonance imaging (MRI), we examined perfusion in chronic aphasia, in perilesional rings in the left hemisphere and their right hemisphere homologues. In the left hemisphere we found a gradient pattern of decreasing perfusion closer to the lesion. The opposite pattern was found in the right hemisphere, with significantly increased perfusion close to the lesion homologue. Perfusion was also increased in the right hemisphere lesion homologue region relative to the surrounding tissue. We next examined changes in perfusion in two groups: one group who underwent MRI scanning before and after three months of a behavioral treatment intervention that led to significant language gains, and a second group who was scanned twice at a three-month interval without a treatment intervention. For both groups, there was no difference in perfusion over time in either the left or the right hemisphere. Moreover, within the treatment group pre-treatment perfusion scores did not predict treatment response; neither did pre-treatment perfusion predict post-treatment language performance. These results indicate that perfusion is chronically abnormal in both hemispheres, but chronically abnormal perfusion did not change in response to our behavioral treatment interventions, and did not predict responsiveness to language treatment.

14.
Neuroimage Clin ; 34: 103022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35489192

RESUMO

Advanced diffusion imaging which accounts for complex tissue properties, such as crossing fibers and extracellular fluid, may detect longitudinal changes in widespread pathology in atypical Parkinsonian syndromes. We implemented fixel-based analysis, Neurite Orientation and Density Imaging (NODDI), and free-water imaging in Parkinson's disease (PD), multiple system atrophy (MSAp), progressive supranuclear palsy (PSP), and controls longitudinally over one year. Further, we used these three advanced diffusion imaging techniques to investigate longitudinal progression-related effects in key white matter tracts and gray matter regions in PD and two common atypical Parkinsonian disorders. Fixel-based analysis and free-water imaging revealed longitudinal declines in a greater number of descending sensorimotor tracts in MSAp and PSP compared to PD. In contrast, only the primary motor descending sensorimotor tract had progressive decline over one year, measured by fiber density (FD), in PD compared to that in controls. PSP was characterized by longitudinal impairment in multiple transcallosal tracts (primary motor, dorsal and ventral premotor, pre-supplementary motor, and supplementary motor area) as measured by FD, whereas there were no transcallosal tracts with longitudinal FD impairment in MSAp and PD. In addition, free-water (FW) and FW-corrected fractional anisotropy (FAt) in gray matter regions showed longitudinal changes over one year in regions that have previously shown cross-sectional impairment in MSAp (putamen) and PSP (substantia nigra, putamen, subthalamic nucleus, red nucleus, and pedunculopontine nucleus). NODDI did not detect any longitudinal white matter tract progression effects and there were few effects in gray matter regions across Parkinsonian disorders. All three imaging methods were associated with change in clinical disease severity across all three Parkinsonian syndromes. These results identify novel extra-nigral and extra-striatal longitudinal progression effects in atypical Parkinsonian disorders through the application of multiple diffusion methods that are related to clinical disease progression. Moreover, the findings suggest that fixel-based analysis and free-water imaging are both particularly sensitive to these longitudinal changes in atypical Parkinsonian disorders.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Estudos Transversais , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Paralisia Supranuclear Progressiva/patologia , Água
15.
Stroke ; 53(5): 1606-1614, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35078348

RESUMO

BACKGROUND: Poststroke recovery depends on multiple factors and varies greatly across individuals. Using machine learning models, this study investigated the independent and complementary prognostic role of different patient-related factors in predicting response to language rehabilitation after a stroke. METHODS: Fifty-five individuals with chronic poststroke aphasia underwent a battery of standardized assessments and structural and functional magnetic resonance imaging scans, and received 12 weeks of language treatment. Support vector machine and random forest models were constructed to predict responsiveness to treatment using pretreatment behavioral, demographic, and structural and functional neuroimaging data. RESULTS: The best prediction performance was achieved by a support vector machine model trained on aphasia severity, demographics, measures of anatomic integrity and resting-state functional connectivity (F1=0.94). This model resulted in a significantly superior prediction performance compared with support vector machine models trained on all feature sets (F1=0.82, P<0.001) or a single feature set (F1 range=0.68-0.84, P<0.001). Across random forest models, training on resting-state functional magnetic resonance imaging connectivity data yielded the best F1 score (F1=0.87). CONCLUSIONS: While behavioral, multimodal neuroimaging data and demographic information carry complementary information in predicting response to rehabilitation in chronic poststroke aphasia, functional connectivity of the brain at rest after stroke is a particularly important predictor of responsiveness to treatment, both alone and combined with other patient-related factors.


Assuntos
Afasia , Acidente Vascular Cerebral , Afasia/diagnóstico por imagem , Afasia/etiologia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Acidente Vascular Cerebral/complicações
16.
J Neurosci ; 42(1): 58-68, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34759031

RESUMO

The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function.SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Bulbo Olfatório/anatomia & histologia , Condutos Olfatórios/anatomia & histologia , Adulto , Feminino , Humanos , Masculino
17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493658

RESUMO

Midlife blood pressure is associated with structural brain changes, cognitive decline, and dementia in late life. However, the relationship between early adulthood blood pressure exposure, brain structure and function, and cognitive performance in midlife is not known. A better understanding of these relationships in the preclinical stage may advance our mechanistic understanding of vascular contributions to late-life cognitive decline and dementia and may provide early therapeutic targets. To identify resting-state functional connectivity of executive control networks (ECNs), a group independent components analysis was performed of functional MRI scans of 600 individuals from the Coronary Artery Risk Development in Young Adults longitudinal cohort study, with cumulative systolic blood pressure (cSBP) measured at nine visits over the preceding 30 y. Dual regression analysis investigated performance-related connectivity of ECNs in 578 individuals (mean age 55.5 ± 3.6 y, 323 female, 243 Black) with data from the Stroop color-word task of executive function. Greater connectivity of a left ECN to the bilateral anterior gyrus rectus, right posterior orbitofrontal cortex, and nucleus accumbens was associated with better executive control performance on the Stroop. Mediation analyses showed that while the relationship between cSBP and Stroop performance was mediated by white matter hyperintensities (WMH), resting-state connectivity of the ECN mediated the relationship between WMH and executive function. Increased connectivity of the left ECN to regions involved in reward processing appears to compensate for the deleterious effects of WMH on executive function in individuals across the burden of cumulative systolic blood pressure exposure in midlife.


Assuntos
Pressão Sanguínea , Encéfalo/fisiopatologia , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Função Executiva/fisiologia , Vias Neurais , Substância Branca/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Disfunção Cognitiva/patologia , Demência/patologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto Jovem
18.
Sci Rep ; 11(1): 16567, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400672

RESUMO

Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups (left and right muscles segmented separately, 14 muscles total) from Dixon MRI scans (n = 17, 17 scans < 2 weeks post motor vehicle collision (MVC), and 17 scans 12 months post MVC). The CNN MFI measures demonstrated high test reliability and accuracy in an independent testing dataset (n = 18, 9 scans < 2 weeks post MVC, and 9 scans 12 months post MVC). Using the CNN in 84 participants with scans < 2 weeks post MVC (61 females, 23 males, age = 34.2 ± 10.7 years) differences in MFI between the muscle groups and relationships between MFI and sex, age, and body mass index (BMI) were explored. Averaging across all muscles, females had significantly higher MFI than males (p = 0.026). The deep cervical muscles demonstrated significantly greater MFI than the more superficial muscles (p < 0.001), and only MFI within the deep cervical muscles was moderately correlated to age (r > 0.300, p ≤ 0.001). CNN's allow for the accurate and rapid, quantitative assessment of the composition of the architecturally complex muscles traversing the cervical spine. Acknowledging the wider reports of MFI in cervical spine disorders and the time required to manually segment the individual muscles, this CNN may have diagnostic, prognostic, and predictive value in disorders of the cervical spine.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade , Antropometria/métodos , Vértebras Cervicais/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Músculos do Pescoço/diagnóstico por imagem , Tecido Adiposo/anatomia & histologia , Adulto , Automação , Índice de Massa Corporal , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Músculos do Pescoço/anatomia & histologia , Variações Dependentes do Observador , Tamanho do Órgão , Reprodutibilidade dos Testes , Adulto Jovem
19.
PLoS One ; 16(6): e0253863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34170961

RESUMO

BACKGROUND: In patients with degenerative cervical myelopathy (DCM) that have spinal cord compression and sensorimotor deficits, surgical decompression is often performed. However, there is heterogeneity in clinical presentation and post-surgical functional recovery. OBJECTIVES: Primary: a) to assess differences in muscle fat infiltration (MFI) in patients with DCM versus controls, b) to assess association between MFI and clinical disability. Secondary: to assess association between MFI pre-surgery and post-surgical functional recovery. STUDY DESIGN: Cross-sectional case control study. METHODS: Eighteen patients with DCM (58.6 ± 14.2 years, 10 M/8F) and 25 controls (52.6 ± 11.8 years, 13M/12 F) underwent 3D Dixon fat-water imaging. A convolutional neural network (CNN) was used to segment cervical muscles (MFSS- multifidus and semispinalis cervicis, LC- longus capitis/colli) and quantify MFI. Modified Japanese Orthopedic Association (mJOA) and Nurick were collected. RESULTS: Patients with DCM had significantly higher MFI in MFSS (20.63 ± 5.43 vs 17.04 ± 5.24, p = 0.043) and LC (18.74 ± 6.7 vs 13.66 ± 4.91, p = 0.021) than controls. Patients with increased MFI in LC and MFSS had higher disability (LC: Nurick (Spearman's ρ = 0.436, p = 0.003) and mJOA (ρ = -0.399, p = 0.008)). Increased MFI in LC pre-surgery was associated with post-surgical improvement in Nurick (ρ = -0.664, p = 0.026) and mJOA (ρ = -0.603, p = 0.049). CONCLUSION: In DCM, increased muscle adiposity is significantly associated with sensorimotor deficits, clinical disability, and functional recovery after surgery. Accurate and time efficient evaluation of fat infiltration in cervical muscles may be conducted through implementation of CNN models.


Assuntos
Vértebras Cervicais/cirurgia , Descompressão Cirúrgica , Doenças da Medula Espinal/cirurgia , Espondilose/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/cirurgia , Pescoço/patologia , Pescoço/cirurgia , Músculos do Pescoço/metabolismo , Músculos do Pescoço/patologia , Músculos do Pescoço/cirurgia , Músculos Paraespinais , Recuperação de Função Fisiológica/fisiologia , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/cirurgia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/metabolismo , Doenças da Medula Espinal/patologia , Espondilose/diagnóstico por imagem , Espondilose/metabolismo , Espondilose/patologia , Resultado do Tratamento
20.
Biol Psychiatry ; 90(3): 165-172, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962781

RESUMO

BACKGROUND: Neighborhood violence increases children's risk for a variety of health problems. Yet, little is known about biological pathways involved or neural mechanisms that might render children more or less vulnerable. Here, we address these questions by considering whether neighborhood violence is associated with the expression of a proinflammatory phenotype and whether this relationship is moderated by resting-state functional connectivity (rsFC) of the central executive network (CEN). METHODS: The study involved 217 children (13.9 years old; 66.4% female; 36.9% Black; 30.9% Latinx), enrolled in eighth grade and reassessed 2 years later. At time 1, geocoding was used to estimate murder frequency in children's neighborhoods, and functional magnetic resonance imaging was used to characterize CEN rsFC. At both visits, children gave antecubital blood for ex vivo studies, where leukocytes were incubated with stimulators and inhibitors of inflammation, and cytokine production was measured. RESULTS: Consistent with our hypotheses, the relationship between neighborhood murder and inflammatory activity was moderated by CEN rsFC. Among children with lower rsFC, neighborhood violence covaried with a proinflammatory phenotype, reflected in larger cytokine responses to triggering stimuli and lower sensitivity to inhibitory agents. These associations were generally not apparent for children with higher rsFC, although occasionally they ran in the opposite direction. The same patterns were apparent 2 years later. CONCLUSIONS: These results advance the understanding of neighborhood violence and its relationship with processes involved in the initiation and resolution of inflammation. They also deepen understanding of variability in children's immunologic responses to stress and suggest that the CEN may be a neurobiological contributor to resilience.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Adolescente , Mapeamento Encefálico , Criança , Cognição , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Fenótipo , Violência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...