Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(15): 3774-3785, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535706

RESUMO

The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.


Assuntos
Matriz Óssea , Osso e Ossos , Ratos , Humanos , Animais , Regeneração Óssea , Osteogênese , Modelos Animais
2.
Subst Abuse Treat Prev Policy ; 19(1): 9, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245698

RESUMO

BACKGROUND: Crack heroin is a novel opiate derivative with highly addictive properties and unfamiliar health consequences. It causes a variety of brain dysfunctions that are mediated by neurochemical alterations and abnormal neuroplasticity. Brain-derived neurotrophic factor (BDNF) is a widely recognized biological marker implicated in the neuropathology of substance use during substance use disorder and withdrawal. Its involvement can significantly contribute to the severity of withdrawal symptoms. Hence, this study aimed to evaluate BDNF levels in crack heroin users before and after withdrawal. METHODS: In this cross-sectional study, 148 male participants were recruited and divided into two groups: persons with crack heroin use disorder (n = 74) and the controls (n = 74). The BDNF serum levels were measured in both crack heroin users and control groups upon hospitalization and again after twenty-one days of withdrawal using the enzyme-linked immunosorbent assay. RESULTS: The results demonstrated that BDNF levels in persons with crack heroin use disorder upon admission were significantly lower than the levels observed upon discharge and in the control group (p < 0.05). Additionally, a significant difference in BDNF levels was found between persons with crack heroin use disorder at admission and discharge (p = 0.038). Furthermore, BDNF levels showed an inverse correlation with the daily dose of substance use (r= -0.420, p = 0.03) and the duration of crack heroin use (r= -0.235, p = 0.001). CONCLUSIONS: A progressive increment in BDNF levels during early detoxification is associated with the daily amount of substance use and the duration of substance use. Our findings suggest that changes in BDNF serum levels during crack heroin use disorder and withdrawal could serve as potential biomarkers for assessing the intensity of withdrawal symptoms and substance use-related behaviors.


Assuntos
Dependência de Heroína , Síndrome de Abstinência a Substâncias , Humanos , Masculino , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo , Estudos Transversais , Heroína/efeitos adversos
3.
Behav Pharmacol ; 34(7): 404-410, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581227

RESUMO

Opioid action in the brain involves the dopamine-reward system as well as non-dopamine pathways. Since vitamin D also modulates the brain's dopamine system, the question of this study was how vitamin D might affect the opioid influences on the reward system. Therefore, the objective of this study was to investigate the possible effect of vitamin D on the conditioned place preference (CPP) induced by morphine, as a valuable model of assessment of the reinforcing properties of opioids by associating the context to the rewarding properties of the addictive drugs. Male Wistar rats were randomly divided into two main groups that either received saline (morphine vehicle) or morphine (5 mg/kg, intraperitoneally) for CPP. Each of the main groups was divided into three vitamin D treatment subgroups: vitamin D vehicle and vitamin D (5 and 10 µg/kg, intraperitoneally). Vitamin D injections were started 1 week ahead of the experiment (two injections) or immediately after post-conditioning and in both cases, it was continued twice weekly throughout the CPP. Administration of vitamin D (10 µg/kg) before conditioning in CPP markedly attenuated morphine expression in the post-conditioning test. Receiving vitamin D (5 or 10 µg/kg) before or after conditioning significantly attenuated morphine reinstatement. Administration of vitamin D after opioid conditioning facilitated morphine memory extinction and attenuated morphine reinstatement. Vitamin D is probably a valuable addition to be considered as a part of the treatment for prevention or minimizing the dependency or relapse to opioids.


Assuntos
Analgésicos Opioides , Morfina , Ratos , Animais , Masculino , Morfina/farmacologia , Analgésicos Opioides/farmacologia , Vitamina D/farmacologia , Extinção Psicológica , Ratos Wistar
4.
Photodiagnosis Photodyn Ther ; 42: 103614, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37201772

RESUMO

The future of molecular-level therapy, efficient medical diagnosis, and drug delivery relies on the effective theragnostic function which can be achieved by the synergistic effect of fluorescent carbon dots (FCDs) liposomes (L) and nanoliposomes. FCDs act as the excipient navigation agent while liposomes play the role of the problem-solving agent, thus the term "theragnostic" would describe the effect of LFCDs properly. Liposomes and FCDs share some excellent at-tributes such as being nontoxic and biodegradable and they can represent a potent delivery system for pharmaceutical compounds. They enhance the therapeutic efficacy of drugs via stabilizing the encapsulated material by circumventing barriers to cellular and tissue uptake. These agents facilitate long-term drug biodistribution to the intended locations of action while eliminating systemic side effects. This manuscript reviews recent progress with liposomes, nanoliposomes (collectively known as lipid vesicles) and fluorescent carbon dots, by exploring their key characteristics, applications, characterization, performance, and challenges. An extensive and intensive understanding of the synergistic interaction between liposomes and FCDs sets out a new research pathway to an efficient and theragnostic / theranostic drug delivery and targeting diseases such as cancer.


Assuntos
Lipossomos , Fotoquimioterapia , Carbono , Distribuição Tecidual , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Corantes
5.
Cell Biol Int ; 46(12): 2028-2040, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098338

RESUMO

Glioblastoma multiforme (GBM) is a common, aggressive, fast-growing tumor of the central nervous system that currently has no effective treatment. Although stem cell therapy has shown promising in vitro achievements, the blood-brain barrier (BBB) has always been a major hurdle to clinical success. To overcome this challenge, exosomes have been targeted as attractive drug delivery agents in numerous studies since they are small enough to enter the BBB. Furthermore, exosomes' characteristics and compositions are directly determined by the parent cell and these heritable traits affect their cell interactions. This article focuses on exosomes as an alternative to stem cell therapy to regulate glioma cell activity. Exosomes were isolated from rat bone marrow mesenchymal stem cells (rBMMSCs) by ultracentrifugation method and then characterized via western blot, dynamic light scattering, scanning, and transmission electron microscopy. Next, various concentrations of the exosomes were incubated with C6 cells and their effects at different time points were evaluated in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin/Pi assay results confirmed that the isolated exosomes cause cell death mostly through apoptosis, and a linear correlation was observed between exosomes' concentration and their cytotoxicity. Following that, the scratch test, colony formation test, and Transwell assay confirmed exosomes' significant impact on the migration and invasion behavior of C6 cells. For the first time, rBMMSC-derived exosomes have been used as a single treatment for GBM rather than in combination with other treatments or as a pharmaceutical carrier.


Assuntos
Exossomos , Glioblastoma , Glioma , Células-Tronco Mesenquimais , Ratos , Animais , Glioblastoma/patologia , Exossomos/metabolismo , Proliferação de Células , Glioma/metabolismo
6.
ACS Biomater Sci Eng ; 8(3): 1258-1270, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35193354

RESUMO

While bone regenerates itself after an injury, a critical bone defect requires external interventions. Engineering approaches to restore bone provide a temporary scaffold to support the damage and provide beneficial biological cues for bone repair. Biomimetically generated scaffolds replicate the naturally occurring phenomena in bone regeneration. In this study, a gelatin-calcium phosphate nanocomposite was synthesized by an efficient and cost-effective double-diffusion biomimetic approach. Calcium and phosphate ions are impregnated in the gelatin, mimicking the natural bone mineralization process. Glutaraldehyde from 0.5 to 2 w/v% was used for gelatin cross-linking and mechanical properties of the scaffold, and its biological support for rat bone marrow mesenchymal stromal cells was analyzed. Analysis of scanning electron microscopy images of the nanocomposite scaffolds and Fourier transform infrared (FTIR) and X-ray diffraction (XRD) characterizations of these scaffolds confirmed precipitation of calcium phosphates in the gelatin. Moreover, lysozyme degradation assay showed that scaffold degradation reversely correlates with the concentration of the cross-linking agent. Increased glutaraldehyde concentrations enhanced the mechanical properties of the scaffolds, bringing them closer to those of cancellous bone. Rat bone marrow mesenchymal stromal cells maintained their viability on these scaffolds compared to standard cell culture plates. In addition, these cells showed differentiation into bone lineage as evaluated from alkaline phosphatase activity up to 21 days and Alizarin red staining of the cells over 28 days. Eventually, scaffolds were implanted in a cranial defect in a rat animal model with a 5 mm diameter. Bone regeneration was studied over 90 days. Analysis of histological sections of the injury and computer tomography images revealed that nanocomposite scaffolds cross-linked with 1% w/v glutaraldehyde provide the maximum bone regeneration after 90 days. Collectively, our data show that nanocomposite scaffolds developed here provide effective regeneration for extensive bone defects in vivo.


Assuntos
Gelatina , Nanocompostos , Animais , Biomimética , Gelatina/farmacologia , Glutaral/farmacologia , Modelos Animais , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
Behav Brain Res ; 356: 156-169, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30144460

RESUMO

Depression, a common mood disorder, involves anhedonia and defects in reward circuits and mesolimbic dopamine transmission in the striatum and nucleus accumbens (NAc). Active vitamin-D, (1,25-(OH)2 vitamin-D3), exerts protective and regulatory effects on the brain dopamine system. In this study, key depression-like symptoms were induced in rats by chronic mild-stress (CMS) and the comparative effect of treatment with 1,25-(OH)2 vitamin-D3 (5, 10 µg/kg, or vehicle; i.p., twice weekly) or fluoxetine (5 mg/kg or vehicle, i.p., daily) on anhedonic behavior, locomotor activity and anxiety-like behavior was examined using sucrose preference test (SPT), open field test (OFT) and novel object exploration test (NOT), respectively. We also measured serum corticosterone levels and dopamine transporter-immunoreactivity (DAT-ir) levels in NAc shell and core. CMS exposure for 3 weeks was followed by a SPT and thereafter CMS was continued for 5 weeks, along with vitamin-D or fluoxetine treatment and further testing, which was concluded with another SPT. Vitamin-D treatment enhanced sucrose preference (P < 0.01; an hedonic effect) and increased object exploration (P < 0.01) in CMS rats. CMS significantly reduced the level of DAT-ir in NAc (P < 0.0001). Vitamin-D treatment restored/increased DAT-ir levels (P < 0.0001) in CMS rat NAc (core/ shell), compared to levels in fluoxetine treated and non-treated CMS rats. Vitamin-D did not alter locomotor activity or produce an anxiolytic effect in the OFT. These data suggest that similar to the antidepressant, fluoxetine, regular vitamin-D treatment can improve 'anhedonia-like symptoms' in rats subjected to CMS, probably by regulating the effect of dopamine-related actions in the NAc.


Assuntos
Anedonia/efeitos dos fármacos , Depressão/metabolismo , Vitamina D/fisiologia , Anedonia/fisiologia , Animais , Antidepressivos/farmacologia , Ansiedade/metabolismo , Transtornos de Ansiedade/tratamento farmacológico , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Dopamina/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico , Vitamina D/metabolismo , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...