Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 296(6): H1822-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19376807

RESUMO

Substrate use switches from fatty acids toward glucose in pressure overload-induced cardiac hypertrophy with an acceleration of glycolysis being characteristic. The activation of AMP-activated protein kinase (AMPK) observed in hypertrophied hearts provides one potential mechanism for the acceleration of glycolysis. Here, we directly tested the hypothesis that AMPK causes the acceleration of glycolysis in hypertrophied heart muscle cells. The H9c2 cell line, derived from the embryonic rat heart, was treated with arginine vasopressin (AVP; 1 microM) to induce a cellular model of hypertrophy. Rates of glycolysis and oxidation of glucose and palmitate were measured in nonhypertrophied and hypertrophied H9c2 cells, and the effects of inhibition of AMPK were determined. AMPK activity was inhibited by 6-[4-(2-piperidin-1- yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrrazolo-[1,5-a]pyrimidine (compound C) or by adenovirus-mediated transfer of dominant negative AMPK. Compared with nonhypertrophied cells, glycolysis was accelerated and palmitate oxidation was reduced with no significant alteration in glucose oxidation in hypertrophied cells, a metabolic profile similar to that of intact hypertrophied hearts. Inhibition of AMPK resulted in the partial reduction of glycolysis in AVP-treated hypertrophied H9c2 cells. Acute exposure of H9c2 cells to AVP also activated AMPK and accelerated glycolysis. These elevated rates of glycolysis were not altered by AMPK inhibition but were blocked by agents that interfere with Ca(2+) signaling, including extracellular EGTA, dantrolene, and 2-aminoethoxydiphenyl borate. We conclude that the acceleration of glycolysis in AVP-treated hypertrophied heart muscle cells is partially dependent on AMPK, whereas the acute glycolytic effects of AVP are AMPK independent and at least partially Ca(2+) dependent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arginina Vasopressina/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/enzimologia , Vasoconstritores/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Arginina Vasopressina/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Cálcio/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/fisiologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Vasoconstritores/farmacologia
2.
Am J Physiol Heart Circ Physiol ; 294(6): H2497-506, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375721

RESUMO

The metabolic actions of the antidiabetic agent metformin reportedly occur via the activation of the AMP-activated protein kinase (AMPK) in the heart and other tissues in the presence or absence of changes in cellular energy status. In this study, we tested the hypothesis that metformin has AMPK-independent effects on metabolism in heart muscle. Fatty acid oxidation and glucose utilization (glycolysis and glucose uptake) were measured in isolated working hearts from halothane-anesthetized male Sprague-Dawley rats and in cultured heart-derived H9c2 cells in the absence or in the presence of metformin (2 mM). Fatty acid oxidation and glucose utilization were significantly altered by metformin in hearts and H9c2 cells. AMPK activity was not measurably altered by metformin in either model system, and no impairment of energetic state was observed in the intact hearts. Furthermore, the inhibition of AMPK by 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyyrazolo[1,5-a] pyrimidine (Compound C), a well-recognized pharmacological inhibitor of AMPK, or the overexpression of a dominant-negative form of AMPK failed to prevent the metabolic actions of metformin in H9c2 cells. The exposure of H9c2 cells to inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) or protein kinase C (PKC) partially or completely abrogated metformin-induced alterations in metabolism in these cells, respectively. Thus the metabolic actions of metformin in the heart muscle can occur independent of changes in AMPK activity and may be mediated by p38 MAPK- and PKC-dependent mechanisms.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP , Nucleotídeos de Adenina/metabolismo , Animais , Débito Cardíaco/efeitos dos fármacos , Linhagem Celular , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Fosfocreatina/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 292(1): H140-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16920812

RESUMO

Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5'-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3-4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.


Assuntos
Metabolismo Energético , Ácidos Graxos/metabolismo , Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Adaptação Fisiológica , Animais , Pressão Sanguínea , Masculino , Ratos , Ratos Sprague-Dawley
4.
Am J Physiol Heart Circ Physiol ; 287(3): H1055-63, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15105170

RESUMO

Adaptation of myocardial energy substrate utilization may contribute to the cardioprotective effects of regular exercise, a possibility supported by evidence showing that pharmacological metabolic modulation is beneficial to ischemic hearts during reperfusion. Thus we tested the hypothesis that the beneficial effect of regular physical exercise on recovery from ischemia-reperfusion is associated with a protective metabolic phenotype. Function, glycolysis, and oxidation of glucose, lactate, and palmitate were measured in isolated working hearts from sedentary control (C) and treadmill-trained (T: 10 wk, 4 days/wk) female Sprague-Dawley rats submitted to 20 min ischemia and 40 min reperfusion. Training resulted in myocardial hypertrophy (1.65 +/- 0.05 vs. 1.30 +/- 0.03 g heart wet wt, P < 0.001) and improved recovery of function after ischemia by nearly 50% (P < 0.05). Glycolysis was 25-30% lower in T hearts before and after ischemia (P < 0.05), whereas rates of glucose oxidation were 45% higher before ischemia (P < 0.01). As a result, the fraction of glucose oxidized before and after ischemia was, respectively, twofold and 25% greater in T hearts (P < 0.05). Palmitate oxidation was 50-65% greater in T than in C before and after ischemia (P < 0.05), whereas lactate oxidation did not differ between groups. Alteration in content of selected enzymes and proteins, as assessed by immunoblot analysis, could not account for the reduction in glycolysis or increase in glucose and palmitate oxidation observed. Combined with the studies on the beneficial effect of pharmacological modulation of energy metabolism, the present results provide support for a role of metabolic adaptations in protecting the trained heart against ischemia-reperfusion injury.


Assuntos
Metabolismo Energético , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Condicionamento Físico Animal , Animais , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Técnicas In Vitro , Fenótipo , Proteínas/metabolismo , Prótons , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
5.
Am J Physiol Regul Integr Comp Physiol ; 284(4): R936-44, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12626360

RESUMO

We tested the hypothesis that activation of AMP-activated protein kinase (AMPK) promotes myocardial glycogenolysis by decreasing glycogen synthase (GS) and/or increasing glycogen phosphorylase (GP) activities. Isolated working hearts from halothane-anesthetized male Sprague-Dawley rats perfused in the absence or presence of 0.8 or 1.2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), an adenosine analog and cell-permeable activator of AMPK, were studied. Glycogen degradation was increased by AICAR, while glycogen synthesis was not affected. AICAR increased myocardial 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranotide (ZMP), the active intracellular form of AICAR, but did not alter the activity of GS and GP measured in tissue homogenates or the content of glucose-6-phosphate and adenine nucleotides in freeze-clamped tissue. Importantly, the calculated intracellular concentration of ZMP achieved in this study was similar to the K(m) value of ZMP for GP determined in homogenates of myocardial tissue. We conclude that the data are consistent with allosteric activation of GP by ZMP being responsible for the glycogenolysis caused by AICAR in the intact rat heart.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Glicogênio/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Ribonucleotídeos/farmacologia , Adenilato Quinase/metabolismo , Regulação Alostérica , Aminoimidazol Carboxamida/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase/metabolismo , Masculino , Miocárdio/enzimologia , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/metabolismo , Estereoisomerismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...