Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biotelemetry ; 11(1): 13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38800509

RESUMO

Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags on free-ranging animals remains a challenge since satellite and GSM networks are relatively expensive and or power hungry. Recently a new class of low-power communication networks have been developed and deployed worldwide to connect the internet of things (IoT). Here, we evaluated one of these, the Sigfox IoT network, for the potential as a real-time multi-sensor data retrieval and tag commanding system for studying fauna across a diversity of species and ecosystems. We tracked 312 individuals across 30 species (from 25 g bats to 3 t elephants) with seven different device concepts, resulting in more than 177,742 successful transmissions. We found a maximum line of sight communication distance of 280 km (on a flying cape vulture [Gyps coprotheres]), which sets a new documented record for animal-borne digital data transmission using terrestrial infrastructure. The average transmission success rate amounted to 68.3% (SD 22.1) on flying species and 54.1% (SD 27.4) on terrestrial species. In addition to GPS data, we also collected and transmitted data products from accelerometers, barometers, and thermometers. Further, we assessed the performance of Sigfox Atlas Native, a low-power method for positional estimates based on radio signal strengths and found a median accuracy of 12.89 km (MAD 5.17) on animals. We found that robust real-time communication (median message delay of 1.49 s), the extremely small size of the tags (starting at 1.28 g without GPS), and the low power demands (as low as 5.8 µAh per transmitted byte) unlock new possibilities for ecological data collection and global animal observation.

2.
Curr Biol ; 32(20): R1187-R1199, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283388

RESUMO

Bird migrations are impressive behavioral phenomena, representing complex spatiotemporal strategies to balance costs of living while maximizing fitness. The field of bird migration research has made great strides over the past decades, yet fundamental gaps remain. Technologies have sparked a transformation in the study of bird migration research by revealing remarkable insights into the underlying behavioral, cognitive, physiological and evolutionary mechanisms of these diverse journeys. Here, we aim to encourage broad discussions and promote future studies by highlighting research fields that are characterized by major knowledge gaps or conflicting evidence, namely the fields of navigation, social learning, individual development, energetics and conservation. We approach each topic by summarizing the current state of knowledge and provide a future outlook of ideas and state-of-the-art methods to further advance the field. Integrating knowledge across these disciplines will allow us to understand the adaptive abilities of different species and to develop effective conservation strategies in a rapidly changing world.


Assuntos
Evolução Biológica , Aves , Animais , Aves/fisiologia , Migração Animal/fisiologia
3.
Mov Ecol ; 9(1): 63, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930467

RESUMO

BACKGROUND: Many birds species range over vast geographic regions and migrate seasonally between their breeding and overwintering sites. Deciding when to depart for migration is one of the most consequential life-history decisions an individual may make. However, it is still not fully understood which environmental cues are used to time the onset of migration and to what extent their relative importance differs across a range of migratory strategies. We focus on departure decisions of a songbird, the Eurasian blackbird Turdus merula, in which selected Russian and Polish populations are full migrants which travel relatively long-distances, whereas Finnish and German populations exhibit partial migration with shorter migration distances. METHODS: We used telemetry data from the four populations (610 individuals) to determine which environmental cues individuals from each population use to initiate their autumn migration. RESULTS: When departing, individuals in all populations selected nights with high atmospheric pressure and minimal cloud cover. Fully migratory populations departed earlier in autumn, at longer day length, at higher ambient temperatures, and during nights with higher relative atmospheric pressure and more supportive winds than partial migrants; however, they did not depart in higher synchrony. Thus, while all studied populations used the same environmental cues, they used population-specific and locally tuned thresholds to determine the day of departure. CONCLUSIONS: Our data support the idea that migratory timing is controlled by general, species-wide mechanisms, but fine-tuned thresholds in response to local conditions.

4.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200213, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121457

RESUMO

In a seasonal world, organisms are continuously adjusting physiological processes relative to local environmental conditions. Owing to their limited heat and fat storage capacities, small animals, such as songbirds, must rapidly modulate their metabolism in response to weather extremes and changing seasons to ensure survival. As a consequence of previous technical limitations, most of our existing knowledge about how animals respond to changing environmental conditions comes from laboratory studies or field studies over short temporal scales. Here, we expanded beyond previous studies by outfitting 71 free-ranging Eurasian blackbirds (Turdus merula) with novel heart rate and body temperature loggers coupled with radio transmitters, and followed individuals in the wild from autumn to spring. Across seasons, blackbirds thermoconformed at night, i.e. their body temperature decreased with decreasing ambient temperature, but not so during daytime. By contrast, during all seasons blackbirds increased their heart rate when ambient temperatures became colder. However, the temperature setpoint at which heart rate was increased differed between seasons and between day and night. In our study, blackbirds showed an overall seasonal reduction in mean heart rate of 108 beats min-1 (21%) as well as a 1.2°C decrease in nighttime body temperature. Episodes of hypometabolism during cold periods likely allow the birds to save energy and, thus, help offset the increased energetic costs during the winter when also confronted with lower resource availability. Our data highlight that, similar to larger non-hibernating mammals and birds, small passerine birds such as Eurasian blackbirds not only adjust their heart rate and body temperature on daily timescales, but also exhibit pronounced seasonal changes in both that are modulated by local environmental conditions such as temperature. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Assuntos
Temperatura Corporal/fisiologia , Ritmo Circadiano , Frequência Cardíaca/fisiologia , Aves Canoras/fisiologia , Animais , Estações do Ano
5.
J Exp Biol ; 223(Pt 22)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32967995

RESUMO

Developmental exposure of embryos to maternal hormones such as testosterone in the avian egg influences the expression of multiple traits, with certain effects being sex specific and lasting into adulthood. This pleiotropy, sex dependency and persistency may be the consequence of developmental programming of basic systemic processes such as adrenocortical activity or metabolic rate. We investigated whether experimentally increased in ovo exposure to testosterone influenced hypothalamus-pituitary-adrenal function, i.e. baseline and stress-induced corticosterone secretion, and resting metabolic rate (RMR) of adult male and female house sparrows (Passer domesticus). In previous experiments with this passerine bird we demonstrated effects of embryonic testosterone exposure on adult agonistic and sexual behavior and survival. Here we report that baseline corticosterone levels and the stress secretion profile of corticosterone are modified by in ovo testosterone in a sex-specific and life history stage-dependent manner. Compared with controls, males from testosterone-treated eggs had higher baseline corticosterone levels, whereas females from testosterone-treated eggs showed prolonged stress-induced corticosterone secretion during the reproductive but not the non-reproductive phase. Adult RMR was unaffected by in ovo testosterone treatment but correlated with integrated corticosterone stress secretion levels. We conclude that exposure of the embryo to testosterone programs the hypothalamus-pituitary-adrenal axis in a sex-specific manner that in females depends, in expression, on reproductive state. The modified baseline corticosterone levels in males and stress-induced corticosterone levels in females may explain some of the long-lasting effects of maternal testosterone in the egg on behavior and could be linked to previously observed reduced mortality of testosterone-treated females.


Assuntos
Pardais , Testosterona , Animais , Corticosterona , Feminino , Estágios do Ciclo de Vida , Masculino , Sistema Hipófise-Suprarrenal , Estresse Fisiológico
6.
Ecol Evol ; 10(4): 2213-2224, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128150

RESUMO

Wildlife inhabiting urban environments exhibit drastic changes in morphology, physiology, and behavior. It has often been argued that these phenotypic responses could be the result of micro-evolutionary changes following the urbanization process. However, other mechanisms such as phenotypic plasticity, maternal effects, and developmental plasticity could be involved as well. To address maternal effects as potential mechanisms, we compared maternal hormone and antibody concentrations in eggs between city and forest populations of European blackbirds (Turdus merula), a widely distributed species for which previous research demonstrated differences in behavioral and physiological traits. We measured egg and yolk mass, yolk concentrations of androgens (androstenedione [A4], testosterone [T], 5α-dihydrotestosterone [5α-DHT], and immunoglobulins [IgY]) and related them to population, clutch size, laying order, embryo sex, and progress of breeding season. We show (a) earlier onset of laying in the city than forest population, but similar egg and clutch size; (b) higher overall yolk androgen concentrations in the forest than the city population (sex-dependent for T); (c) greater among-female variation of yolk T and 5α-DHT concentrations in the forest than city population, but similar within-clutch variation; (d) similar IgY concentrations with a seasonal decline in both populations; and (e) population-specific positive (city) or negative (forest) association of yolk A4 and T with IgY concentrations. Our results are consistent with the hypotheses that hormone-mediated maternal effects contribute to differences in behavioral and physiological traits between city and forest individuals and that yolk androgen and immunoglobulin levels can exhibit population-specific relationships rather than trade-off against each other.

7.
Elife ; 62017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157357

RESUMO

To evolve and to be maintained, seasonal migration, despite its risks, has to yield fitness benefits compared with year-round residency. Empirical data supporting this prediction have remained elusive in the bird literature. To test fitness related benefits of migration, we studied a partial migratory population of European blackbirds (Turdus merula) over 7 years. Using a combination of capture-mark-recapture and radio telemetry, we compared survival probabilities between migrants and residents estimated by multi-event survival models, showing that migrant blackbirds had 16% higher probability to survive the winter compared to residents. A subsequent modelling exercise revealed that residents should have 61.25% higher breeding success than migrants, to outweigh the survival costs of residency. Our results support theoretical models that migration should confer survival benefits to evolve, and thus provide empirical evidence to understand the evolution and maintenance of migration.


Assuntos
Migração Animal , Aves Canoras/fisiologia , Animais , Modelos Biológicos , Estações do Ano , Análise de Sobrevida
8.
Mol Ecol ; 26(12): 3204-3216, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316119

RESUMO

Seasonal migration is a widespread phenomenon, which is found in many different lineages of animals. This spectacular behaviour allows animals to avoid seasonally adverse environmental conditions to exploit more favourable habitats. Migration has been intensively studied in birds, which display astonishing variation in migration strategies, thus providing a powerful system for studying the ecological and evolutionary processes that shape migratory behaviour. Despite intensive research, the genetic basis of migration remains largely unknown. Here, we used state-of-the-art radio-tracking technology to characterize the migratory behaviour of a partially migratory population of European blackbirds (Turdus merula) in southern Germany. We compared gene expression of resident and migrant individuals using high-throughput transcriptomics in blood samples. Analyses of sequence variation revealed a nonsignificant genetic structure between blackbirds differing by their migratory phenotype. We detected only four differentially expressed genes between migrants and residents, which might be associated with hyperphagia, moulting and enhanced DNA replication and transcription. The most pronounced changes in gene expression occurred between migratory birds depending on when, in relation to their date of departure, blood was collected. Overall, the differentially expressed genes detected in this analysis may play crucial roles in determining the decision to migrate, or in controlling the physiological processes required for the onset of migration. These results provide new insights into, and testable hypotheses for, the molecular mechanisms controlling the migratory phenotype and its underlying physiological mechanisms in blackbirds and other migratory bird species.


Assuntos
Migração Animal , Genética Populacional , Aves Canoras/genética , Transcriptoma , Animais , Evolução Biológica , Genômica , Alemanha
10.
Sci Rep ; 6: 34207, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666200

RESUMO

Every year, billions of wild diurnal songbirds migrate at night. To do so, they shift their daily rhythm from diurnality to nocturnality. In captivity this is observed as a gradual transition of daytime activity developing into nocturnal activity, but how wild birds prepare their daily rhythms for migration remains largely unknown. Using an automated radio-telemetry system, we compared activity patterns of free-living migrant and resident European blackbirds (Turdus merula) in a partially migratory population during the pre-migratory season. We found that activity patterns between migrant and resident birds did not differ during day and night. Migrants did not change their daily rhythm in a progressive manner as has been observed in captivity, but instead abruptly became active during the night of departure. The rapid shift in rhythmicity might be more common across migratory songbird species, but may not have been observed before in wild animals due to a lack of technology.

11.
Proc Biol Sci ; 282(1816): 20151745, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26423847

RESUMO

Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.


Assuntos
Luz/efeitos adversos , Macropodidae/fisiologia , Melatonina/fisiologia , Reprodução/efeitos da radiação , Animais , Cidades , Austrália Ocidental
12.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25780232

RESUMO

Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.


Assuntos
Monitoramento Ambiental/instrumentação , Poluição Ambiental , Luz , Passeriformes/fisiologia , Fotoperíodo , Distribuição Animal , Animais , Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Monitoramento Ambiental/métodos , Atividade Motora
13.
Front Zool ; 12: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705242

RESUMO

BACKGROUND: Individuals of the same age can differ substantially in the degree to which they have accumulated tissue damage, akin to bodily wear and tear, from past experiences. This accumulated tissue damage reflects the individual's biological age and may better predict physiological and behavioural performance than the individual's chronological age. However, at present it remains unclear how to reliably assess biological age in individual wild vertebrates. METHODS: We exposed hand-raised adult Eurasian blackbirds (Turdus merula) to a combination of repeated immune and disturbance stressors for over one year to determine the effects of chronic stress on potential biomarkers of biological ageing including telomere shortening, oxidative stress load, and glucocorticoid hormones. We also assessed general measures of individual condition including body mass and locomotor activity. RESULTS: By the end of the experiment, stress-exposed birds showed greater decreases in telomere lengths. Stress-exposed birds also maintained higher circulating levels of oxidative damage compared with control birds. Other potential biomarkers such as concentrations of antioxidants and glucocorticoid hormone traits showed greater resilience and did not differ significantly between treatment groups. CONCLUSIONS: The current data demonstrate that repeated exposure to experimental stressors affects the rate of biological ageing in adult Eurasian blackbirds. Both telomeres and oxidative damage were affected by repeated stress exposure and thus can serve as blood-derived biomarkers of biological ageing.

14.
Physiol Behav ; 142: 14-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25619949

RESUMO

Despite urban ecology being an established field of research, there is still surprisingly little information about the relative contribution of specific environmental factors driving the observed changes in the behavior and physiology of city dwellers. One of the most reported effects of urbanization is the advanced phenology observed in birds. Many factors have been suggested to underline such effect, including warmer microclimate, anthropogenic food supply and light pollution. Since social stimuli are known to affect reproductive timing and breeding density is usually higher in urban populations compared to rural ones, we experimentally tested whether social interactions could advance the onset of reproduction in European blackbirds (Turdus merula). We housed male blackbirds of rural and urban origins with or without a conspecific female, and recorded their seasonal variation in gonadal size and production of luteinizing hormone (LH). Paired and unpaired males of both urban and rural origins did not significantly differ in their timing of gonadal growth. Moreover, rural and urban birds did not differ in their response to the social stimuli, rather they became reproductively active at the same time, a result that confirms previous studies that attributed the difference in reproductive timing observed in the field to phenotypic plasticity. We conclude that social stimuli do not contribute substantially to the observed early onset of reproductive physiology in urban bird species, rather other factors such as light pollution are likely to be stronger drivers of these physiological changes.


Assuntos
Meio Ambiente , Passeriformes/fisiologia , Reprodução/fisiologia , Comportamento Social , Animais , Cidades , Sinais (Psicologia) , Feminino , Florestas , Luz , Hormônio Luteinizante/sangue , Masculino , Tamanho do Órgão , Passeriformes/anatomia & histologia , Fotoperíodo , Testículo/anatomia & histologia , Testículo/fisiologia , Fatores de Tempo
15.
J Exp Biol ; 217(Pt 17): 2994-7, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24948638

RESUMO

Cities may expose wild animals to new types of selection pressures, potentially leading to differentiation among urban and rural populations. One cellular mechanism likely important in determining the viability of vertebrate populations is resistance to oxidative stress, as tissue degradation resulting from oxidative stress may decrease reproductive performance and survival. We hypothesized that city-thriving Eurasian blackbirds (Turdus merula) would be more resistant to oxidative stress when exposed to stressful conditions than rural conspecifics. Hand-raised city and rural blackbirds kept under common garden conditions indeed differed in blood oxidative status when exposed to chronic stress: city birds had lower oxidative damage during stressful conditions compared with rural birds, but also tended to generally maintain lower levels of non-enzymatic and enzymatic antioxidants than rural birds. These findings show that individuals from urban and rural areas differ intrinsically in their blood oxidative status physiology, possibly as an adaptation to city life.


Assuntos
Adaptação Fisiológica/fisiologia , Antioxidantes/análise , Estresse Oxidativo/fisiologia , Aves Canoras/sangue , Aves Canoras/imunologia , Estresse Fisiológico/fisiologia , Animais , Cidades , Feminino , Alemanha , Masculino , Estresse Fisiológico/imunologia
16.
J Anim Ecol ; 83(3): 681-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24102250

RESUMO

The growing interest in the effects of light pollution on daily and seasonal cycles of animals has led to a boost of research in recent years. In birds, it has been hypothesized that artificial light at night can affect daily aspects of behaviour, but one caveat is the lack of knowledge about the light intensity that wild animals, such as birds, are exposed to during the night. Organisms have naturally evolved daily rhythms to adapt to the 24-h cycle of day and night, thus, it is important to investigate the potential shifts in daily cycles due to global anthropogenic processes such as urbanization. We captured adult male European blackbirds (Turdus merula) in one rural forest and two urban sites differing in the degree of anthropogenic disturbance. We tagged these birds with light loggers and simultaneously recorded changes in activity status (active/non-active) through an automated telemetry system. We first analysed the relationship between light at night, weather conditions and date with daily activity onset and end. We then compared activity, light at night exposure and noise levels between weekdays and weekends. Onset of daily activity was significantly advanced in both urban sites compared to the rural population, while end of daily activity did not vary either among sites. Birds exposed to higher amounts of light in the late night showed earlier onset of activity in the morning, but light at night did not influence end of daily activity. Light exposure at night and onset/end of daily activity timing was not different between weekdays and weekends, but all noise variables were. A strong seasonal effect was detected in both urban and rural populations, such as birds tended to be active earlier in the morning and later in the evening (relative to civil twilight) in the early breeding season than at later stages. Our results point at artificial light at night as a major driver of change in timing of daily activity. Future research should focus on the costs and benefits of altered daily rhythmicity in birds thriving in urban areas.


Assuntos
Ritmo Circadiano , Luz , Atividade Motora , Aves Canoras/fisiologia , Animais , Cidades , Alemanha , Iluminação , Masculino , Telemetria
17.
PLoS One ; 8(12): e85069, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376865

RESUMO

Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems.


Assuntos
Luz/efeitos adversos , Locomoção/fisiologia , Muda/fisiologia , Passeriformes/fisiologia , Reprodução/fisiologia , Estações do Ano , Animais , Pesos e Medidas Corporais , Cidades , Alemanha , Modelos Lineares , Locomoção/efeitos da radiação , Masculino , Muda/efeitos da radiação , Reprodução/efeitos da radiação , Testículo/fisiologia , Testículo/efeitos da radiação , Testosterona/metabolismo
18.
Front Zool ; 10(1): 60, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090446

RESUMO

INTRODUCTION: Artificial light-at-night is known to affect a broad array of behaviours and physiological processes. In urbanized bird species, light-at-night advances important biological rhythms such as daily cycles of activity/rest and timing of reproduction, but our knowledge of the underlying physiological mechanisms is limited. Given its role as chronobiological signal, melatonin is a strong candidate for mediating the effects of light-at-night. RESULTS: We exposed urban and rural European blackbirds (Turdus merula) to two light treatments equal in photoperiod but with different light intensities at night. The control group was exposed to 0.0001 lux (almost darkness), while the experimental group was exposed to 0.3 lux at night, simulating conditions recorded previously on free-living urban blackbirds. We obtained diel profiles of plasma melatonin for all birds in summer (July) and winter (January), while simultaneously recording locomotor activity. Daily patterns of melatonin concentrations were clearly affected by light-at-night in both seasons. In winter, melatonin concentrations of light-at-night birds were lower in the early and late night than in those of birds kept in darkness. In summer, melatonin concentrations of the light-at-night birds were lower through all night compared to birds kept in darkness. Locomotor activity in light-at-night birds was overall higher than in control individuals, both during the day and at night, and it increased sharply before dawn. In winter, the amount of activity before dawn in the light-at-night group correlated with changes in melatonin from midnight to late night: the greater the decrease in melatonin, the greater the amount of pre-dawn activity. Urban and rural birds responded similarly to light-at-night with respect to melatonin, but differed in their behaviour, with rural birds showing more locomotor activity than urban counterparts. CONCLUSIONS: This study points to reduced melatonin release at night as a potential physiological mechanism underlying the advanced onset of morning activity of urbanized birds. Based on the pattern of melatonin secretion, we suggest that birds responded to light-at-night as if they were exposed to a longer day than birds kept under dark nights.

19.
Glob Chang Biol ; 19(9): 2634-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23681984

RESUMO

Human-altered environmental conditions affect many species at the global scale. An extreme form of anthropogenic alteration is the existence and rapid increase of urban areas. A key question, then, is how species cope with urbanization. It has been suggested that rural and urban conspecifics show differences in behaviour and personality. However, (i) a generalization of this phenomenon has never been made; and (ii) it is still unclear whether differences in personality traits between rural and urban conspecifics are the result of phenotypic plasticity or of intrinsic differences. In a literature review, we show that behavioural differences between rural and urban conspecifics are common and taxonomically widespread among animals, suggesting a significant ecological impact of urbanization on animal behaviour. In order to gain insight into the mechanisms leading to behavioural differences in urban individuals, we hand-raised and kept European blackbirds (Turdus merula) from a rural and a nearby urban area under common-garden conditions. Using these birds, we investigated individual variation in two behavioural responses to the presence of novel objects: approach to an object in a familiar area (here defined as neophilia), and avoidance of an object in a familiar foraging context (defined as neophobia). Neophilic and neophobic behaviours were mildly correlated and repeatable even across a time period of one year, indicating stable individual behavioural strategies. Blackbirds from the urban population were more neophobic and seasonally less neophilic than blackbirds from the nearby rural area. These intrinsic differences in personality traits are likely the result of microevolutionary changes, although we cannot fully exclude early developmental influences.


Assuntos
Evolução Biológica , Passeriformes/fisiologia , Personalidade , Urbanização , Animais , Comportamento Animal , Fenótipo
20.
PLoS One ; 8(4): e60979, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658608

RESUMO

BACKGROUND: Altitudinal migration systems are poorly understood. Recent advances in animal telemetry which enables tracking of migrants across their annual cycles will help illustrate unknown migration patterns and test existing hypotheses. Using telemetry, we show the existence of a complex partial altitudinal migration system in the Himalayas and discuss our findings to help better understand partial and altitudinal migration. METHODOLOGY/PRINCIPAL FINDINGS: We used GPS/accelerometer tags to monitor the migration of Satyr tragopan (Tragopan satyra) in the Bhutan Himalayas. We tagged 38 birds from 2009 - 2011 and found that tragopans are partially migratory. Fall migration lasted from the 3(rd) week of September till the 3(rd) week of November with migrants traveling distances ranging from 1.25 km to 13.5 km over 1 to 32 days. Snowfall did not influence the onset of migration. Return migration started by the 1(st) week of March and lasted until the 1(st) week of April. Individuals returned within 4 to 10 days and displayed site fidelity. One bird switched from being a migrant to a non-migrant. Tragopans displayed three main migration patterns: 1) crossing multiple mountains; 2) descending/ascending longitudinally; 3) moving higher up in winter and lower down in summer. More females migrated than males; but, within males, body size was not a factor for predicting migrants. CONCLUSIONS/SIGNIFICANCE: Our observations of migrants traversing over multiple mountain ridges and even of others climbing to higher elevations is novel. We support the need for existing hypotheses to consider how best to explain inter- as well as intra-sexual differences. Most importantly, having shown that the patterns of an altitudinal migration system are complex and not a simple up and down slope movement, we hope our findings will influence the way altitudinal migrations are perceived and thereby contribute to a better understanding of how species may respond to climate change.


Assuntos
Migração Animal/fisiologia , Galliformes/fisiologia , Altitude , Animais , Butão , Tamanho Corporal , Feminino , Masculino , Estações do Ano , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...