Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Softw Syst Model ; 17(1): 167-203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449796

RESUMO

Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move toward formalization in part because it illustrates some of the barriers to formalization, including the formal complexity of the pattern and the ontological issues surrounding the "one and the many." Powersets are a way of characterizing the (complex) formal structure of the classification pattern, and their formalization has been extensively studied in mathematics since Cantor's work in the late nineteenth century. One can use this formalization to develop a useful benchmark. There are various communities within information systems engineering (ISE) that are gradually working toward a formalization of the classification pattern. However, for most of these communities, this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other information systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design, and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature, starting from the relevant theoretical works of the mathematical literature and gradually shifting focus to the ISE literature. The literature survey follows the evolution of ISE's understanding of how to formalize the classification pattern. The various proposals are assessed using the classical example of classification; the Linnaean taxonomy formalized using powersets as a benchmark for formal expressiveness. The broad conclusion of the survey is that (1) the ISE community is currently in the early stages of the process of understanding how to formalize the classification pattern, particularly in the requirements for expressiveness exemplified by powersets, and (2) that there is an opportunity to intervene and speed up the process of adoption by clarifying this expressiveness. Given the central place that the classification pattern has in domain modeling, this intervention has the potential to lead to significant improvements.

2.
Am J Physiol Renal Physiol ; 298(2): F365-80, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19940036

RESUMO

Renal tubular reabsorption is important for extracellular fluid homeostasis and much of this occurs via the receptor-mediated endocytic pathway. This pathway is disrupted in Dent's disease, an X-linked renal tubular disorder that is characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. Dent's disease is due to mutations of CLC-5, a chloride/proton antiporter, expressed in endosomes and apical membranes of renal tubules. Loss of CLC-5 function alters receptor-mediated endocytosis and trafficking of megalin and cubilin, although the underlying mechanisms remain to be elucidated. Here, we report that CLC-5 interacts with kinesin family member 3B (KIF3B), a heterotrimeric motor protein that facilitates fast anterograde translocation of membranous organelles. Using yeast two-hybrid, glutathione-S-transferase pull-down and coimmunoprecipitation assays, the COOH terminus of CLC-5 and the coiled-coil and globular domains of KIF3B were shown to interact. This was confirmed in vivo by endogenous coimmunoprecipitation of CLC-5 and KIF3B and codistribution with endosomal markers in mouse kidney fractions. Confocal live cell imaging in kidney cells further demonstrated association of CLC-5 and KIF3B, and transport of CLC-5-containing vesicles along KIF3B microtubules. KIF3B overexpression and underexpression, using siRNA, had reciprocal effects on whole cell chloride current amplitudes, CLC-5 cell surface expression, and endocytosis of albumin and transferrin. Clcn5(Y/-) mouse kidneys and isolated proximal tubular polarized cells showed increased KIF3B expression, whose effects on albumin endocytosis were dependent on CLC-5 expression. Thus, the CLC-5 and KIF3B interaction is important for CLC-5 plasma membrane expression and for facilitating endocytosis and microtubular transport in the kidney.


Assuntos
Canais de Cloreto/metabolismo , Endocitose/fisiologia , Rim/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Adulto , Albuminas/metabolismo , Animais , Células COS , Linhagem Celular , Canais de Cloreto/fisiologia , Chlorocebus aethiops , DNA Complementar , Regulação para Baixo , Interações Medicamentosas , Condutividade Elétrica , Biblioteca Gênica , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Rim/citologia , Nefropatias/fisiopatologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Regulação para Cima
3.
Endocrinology ; 150(7): 3067-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19213846

RESUMO

The neural cell adhesion molecule (NCAM) is required for cell type segregation during pancreatic islet organogenesis. We have investigated the functional consequences of ablating NCAM on pancreatic beta-cell function. In vivo, NCAM(-/-) mice exhibit impaired glucose tolerance and basal hyperinsulinemia. Insulin secretion from isolated NCAM(-/-) islets is enhanced at glucose concentrations below 15 mM but inhibited at higher concentrations. Glucagon secretion from pancreatic alpha-cells evoked by low glucose was also severely impaired in NCAM(-/-) islets. The diminution of insulin secretion is not attributable to defective glucose metabolism or glucose sensing (documented as glucose-induced changes in intracellular Ca(2+) and K(ATP)-channel activity). Resting K(ATP) conductance was lower in NCAM(-/-) beta-cells than wild-type cells, and this difference was abolished when F-actin was disrupted by cytochalasin D (1 muM). In wild-type beta-cells, the submembrane actin network disassembles within 10 min during glucose stimulation (30 mM), an effect not seen in NCAM(-/-) beta-cells. Cytochalasin D eliminated this difference and normalized insulin and glucagon secretion in NCAM(-/-) islets. Capacitance measurements of exocytosis indicate that replenishment of the readily releasable granule pool is suppressed in NCAM(-/-) alpha- and beta-cells. Our data suggest that remodeling of the submembrane actin network is critical to normal glucose regulation of both insulin and glucagon secretion.


Assuntos
Intolerância à Glucose/genética , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Moléculas de Adesão de Célula Nervosa/deficiência , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Exocitose/fisiologia , Feminino , Glucagon/metabolismo , Glucose/fisiologia , Insulina/fisiologia , Secreção de Insulina , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
4.
Diabetes ; 57(6): 1618-28, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18390794

RESUMO

OBJECTIVE: To characterize the voltage-gated ion channels in human beta-cells from nondiabetic donors and their role in glucose-stimulated insulin release. RESEARCH DESIGN AND METHODS: Insulin release was measured from intact islets. Whole-cell patch-clamp experiments and measurements of cell capacitance were performed on isolated beta-cells. The ion channel complement was determined by quantitative PCR. RESULTS: Human beta-cells express two types of voltage-gated K(+) currents that flow through delayed rectifying (K(V)2.1/2.2) and large-conductance Ca(2+)-activated K(+) (BK) channels. Blockade of BK channels (using iberiotoxin) increased action potential amplitude and enhanced insulin secretion by 70%, whereas inhibition of K(V)2.1/2.2 (with stromatoxin) was without stimulatory effect on electrical activity and secretion. Voltage-gated tetrodotoxin (TTX)-sensitive Na(+) currents (Na(V)1.6/1.7) contribute to the upstroke of action potentials. Inhibition of Na(+) currents with TTX reduced glucose-stimulated (6-20 mmol/l) insulin secretion by 55-70%. Human beta-cells are equipped with L- (Ca(V)1.3), P/Q- (Ca(V)2.1), and T- (Ca(V)3.2), but not N- or R-type Ca(2+) channels. Blockade of L-type channels abolished glucose-stimulated insulin release, while inhibition of T- and P/Q-type Ca(2+) channels reduced glucose-induced (6 mmol/l) secretion by 60-70%. Membrane potential recordings suggest that L- and T-type Ca(2+) channels participate in action potential generation. Blockade of P/Q-type Ca(2+) channels suppressed exocytosis (measured as an increase in cell capacitance) by >80%, whereas inhibition of L-type Ca(2+) channels only had a minor effect. CONCLUSIONS: Voltage-gated T-type and L-type Ca(2+) channels as well as Na(+) channels participate in glucose-stimulated electrical activity and insulin secretion. Ca(2+)-activated BK channels are required for rapid membrane repolarization. Exocytosis of insulin-containing granules is principally triggered by Ca(2+) influx through P/Q-type Ca(2+) channels.


Assuntos
Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Células Cultivadas , Cobalto/farmacologia , Eletrofisiologia , Perfilação da Expressão Gênica , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Peptídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Venenos de Escorpião/farmacologia , ômega-Agatoxina IVA/farmacologia , ômega-Conotoxina GVIA/farmacologia
5.
Nat Cell Biol ; 9(4): 453-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369816

RESUMO

Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells. Somatostatin is a powerful inhibitor of insulin and glucagon secretion. It is normally secreted in response to glucose and there is evidence suggesting its release becomes perturbed in diabetes. Little is known about the control of somatostatin release. Closure of ATP-regulated K(+)-channels (K(ATP)-channels) and a depolarization-evoked increase in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>or=10 mM) is unaffected by the K(ATP)-channel activator diazoxide and proceeds normally in K(ATP)-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca(2+)-induced Ca(2+)-release (CICR). This constitutes a novel mechanism for K(ATP)-channel-independent metabolic control of pancreatic hormone secretion.


Assuntos
Canais de Cálcio Tipo R/fisiologia , Cálcio/metabolismo , Glucose/farmacologia , Somatostatina/metabolismo , Animais , Cálcio/farmacologia , Canais de Cálcio Tipo R/genética , Citofotometria , Diazóxido/farmacologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Imuno-Histoquímica , Técnicas In Vitro , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Isradipino/farmacologia , Compostos Macrocíclicos/farmacologia , Manoeptulose/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Oxazóis/farmacologia , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Rianodina/farmacologia , Células Secretoras de Somatostatina/efeitos dos fármacos , Células Secretoras de Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...