Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2625, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521763

RESUMO

Homology Directed Repair (HDR) enables precise genome editing, but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we develop a functional, pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing, synergize with a DNAPK inhibitor molecule, and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes.


Assuntos
Sistemas CRISPR-Cas , Reparo de DNA por Recombinação , Humanos , Edição de Genes/métodos , Reparo do DNA , Reparo do DNA por Junção de Extremidades
2.
J Struct Biol ; 206(2): 170-182, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30876891

RESUMO

Plasma kallikrein (pKal) is a serine protease responsible for cleaving high-molecular-weight kininogen to produce the pro-inflammatory peptide, bradykinin. Unregulated pKal activity can lead to hereditary angioedema (HAE) following excess bradykinin release. HAE attacks can lead to a compromised airway that can be life threatening. As there are limited agents for prophylaxis of HAE attacks, there is a high unmet need for a therapeutic agent for regulating pKal with a high degree of specificity. Here we present crystal structures of both full-length and the protease domain of pKal, bound to two very distinct classes of small-molecule inhibitors: compound 1, and BCX4161. Both inhibitors demonstrate low nM inhibitory potency for pKal and varying specificity for related serine proteases. Compound 1 utilizes a surprising mode of interaction and upon binding results in a rearrangement of the binding pocket. Co-crystal structures of pKal describes why this class of small-molecule inhibitor is potent. Lack of conservation in surrounding residues explains the ∼10,000-fold specificity over structurally similar proteases, as shown by in vitro protease inhibition data. Structural information, combined with biochemical and enzymatic analyses, provides a novel scaffold for the design of targeted oral small molecule inhibitors of pKal for treatment of HAE and other diseases resulting from unregulated plasma kallikrein activity.


Assuntos
Calicreína Plasmática/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Cininogênio de Alto Peso Molecular/metabolismo , Cininogênios/metabolismo , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Blood Adv ; 2(5): 549-558, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29519898

RESUMO

Activated factor XIIa (FXIIa) is a serine protease that has received a great deal of interest in recent years as a potential target for the development of new antithrombotics. Despite the strong interest in obtaining structural information, only the structure of the FXIIa catalytic domain in its zymogen conformation is available. In this work, reproducible experimental conditions found for the crystallization of human plasma ß-FXIIa and crystal growth optimization have led to determination of the first structure of the active form of the enzyme. Two crystal structures of human plasma ß-FXIIa complexed with small molecule inhibitors are presented herein. The first is the noncovalent inhibitor benzamidine. The second is an aminoisoquinoline containing a boronic acid-reactive group that targets the catalytic serine. Both benzamidine and the aminoisoquinoline bind in a canonical fashion typical of synthetic serine protease inhibitors, and the protease domain adopts a typical chymotrypsin-like serine protease active conformation. This novel structural data explains the basis of the FXII activation, provides insights into the enzymatic properties of ß-FXIIa, and is a great aid toward the further design of protease inhibitors for human FXIIa.


Assuntos
Fator XII/química , Benzamidinas/química , Ácidos Borônicos/química , Cristalização/métodos , Cristalografia por Raios X , Bases de Dados de Proteínas , Fator XII/antagonistas & inibidores , Humanos , Estrutura Molecular , Ligação Proteica , Software
4.
ACS Med Chem Lett ; 8(3): 321-326, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28337324

RESUMO

We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 (36), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 (36) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).

5.
Elife ; 32014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531069

RESUMO

Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal ß-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or 'strap' and demonstrate its responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally sensitive kinetic barrier between the apo 'open' and ATP-bound 'closed' conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique cellular and organismal environments.


Assuntos
Proteínas de Choque Térmico HSP90/fisiologia , Mitocôndrias/química , Proteínas de Choque Térmico HSP90/química , Humanos , Cinética , Conformação Proteica , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
6.
Mol Biol Cell ; 25(9): 1484-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574455

RESUMO

The nuclear pore complex (NPC) regulates transport between the nucleus and cytoplasm. Soluble cargo-protein complexes navigate through the pore by binding to phenylalanine-glycine (FG)-repeat proteins attached to the channel walls. The Nup62 complex contains the FG-repeat proteins Nup62, Nup54, and Nup58 and is located in the center of the NPC. The three proteins bind each other via conserved coiled-coil segments. To determine the stoichiometry of the Nup62 complex, we undertook an in vitro study using gel filtration and analytical ultracentrifugation. Our results reveal a 1:1:1 stoichiometry of the Nup62 complex, where Nup54 is central with direct binding to Nup62 and Nup58. At high protein concentration, the complex forms larger assemblies while maintaining the Nup62:Nup54:Nup58 ratio. For the homologous Nsp1 complex from Saccharomyces cerevisiae, we determine the same stoichiometry, indicating evolutionary conservation. Furthermore, we observe that eliminating one binding partner can result in the formation of complexes with noncanonical stoichiometry, presumably because unpaired coiled-coil elements tend to find a promiscuous binding partner. We suggest that these noncanonical stoichiometries observed in vitro are unlikely to be physiologically relevant.


Assuntos
Glicoproteínas de Membrana/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Animais , Poro Nuclear/ultraestrutura , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Ratos , Proteínas de Saccharomyces cerevisiae/química , Soluções
7.
Mol Cell ; 53(2): 330-43, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462206

RESUMO

While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.


Assuntos
Trifosfato de Adenosina/metabolismo , Fator 1 Associado a Receptor de TNF/química , Proteínas de Peixe-Zebra/química , Cristalografia por Raios X , Hidrólise , Estrutura Terciária de Proteína , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
8.
Bioorg Med Chem Lett ; 21(23): 7068-71, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22014826

RESUMO

Described is the synthesis of three different fluorescein-tagged derivatives of a macrocycle, and their binding affinity to heat shock protein 90 (Hsp90). Using fluorescence polarization anisotropy, we report the binding affinity of these fluorescein-labeled compounds to Hsp90 in its open state and ATP-dependent closed state. We show that the compounds demonstrate a conformation-dependent preference for binding to the closed state.


Assuntos
Depsipeptídeos/química , Proteínas de Choque Térmico HSP90/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Fluoresceína/química , Proteínas de Choque Térmico HSP90/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica
9.
J Biol Chem ; 285(8): 5664-73, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20007713

RESUMO

E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain function is the control of ligase activity and specificity. Here we present a functional analysis of the HECT domain of the E3 ligase HUWE1 based on crystal structures and show that a single N-terminal helix significantly stabilizes the HECT domain. We observe that this element modulates HECT domain activity, as measured by self-ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle changes to the protein may be at the heart of the vast spectrum of substrate specificities displayed by HECT domain E3 ligases.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Estrutura Secundária de Proteína/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Especificidade por Substrato/fisiologia , Proteínas Supressoras de Tumor , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
10.
Structure ; 17(9): 1156-68, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19748337

RESUMO

Nuclear pore complexes (NPCs) perforate the nuclear envelope and represent the exclusive passageway into and out of the nucleus of the eukaryotic cell. Apart from their essential transport function, components of the NPC have important, direct roles in nuclear organization and in gene regulation. Because of its central role in cell biology, it is of considerable interest to determine the NPC structure at atomic resolution. The complexity of these large, 40-60 MDa protein assemblies has for decades limited such structural studies. More recently, exploiting the intrinsic modularity of the NPC, structural biologists are making progress toward understanding this nanomachine in molecular detail. Structures of building blocks of the stable, architectural scaffold of the NPC have been solved, and distinct models for their assembly proposed. Here we review the status of the field and lay out the challenges and the next steps toward a full understanding of the NPC at atomic resolution.


Assuntos
Poro Nuclear , Proteínas Nucleares/química , Conformação Proteica
11.
J Mol Biol ; 391(2): 375-89, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19505478

RESUMO

The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 A crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Dedos de Zinco , Proteína ran de Ligação ao GTP/química , Sequência de Aminoácidos , Animais , Cristalografia , Análise Mutacional de DNA , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estrutura Terciária de Proteína/genética , Ratos , Alinhamento de Sequência , Dedos de Zinco/genética , Proteína ran de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...