Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23983, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38230237

RESUMO

Accurate photovoltaic (PV) diagnosis is of paramount importance for reducing investment risk and increasing the bankability of the PV technology. The application of fault diagnostic solutions and troubleshooting on operating PV power plants is vital for ensuring optimal energy harvesting, increased power generation production and optimised field operation and maintenance (O&M) activities. This study aims to give an overview of the existing approaches for PV plant diagnosis, focusing on unmanned aerial vehicle (UAV)-based approaches, that can support PV plant diagnostics using imaging techniques and data-driven analytics. This review paper initially outlines the different degradation mechanisms, failure modes and patterns that PV systems are subjected and then reports the main diagnostic techniques. Furthermore, the essential equipment and sensor's requirements for diagnosing failures in monitored PV systems using UAV-based approaches are provided. Moreover, the study summarizes the operating conditions and the various failure types that can be detected by such diagnostic approaches. Finally, it provides recommendations and insights on how to develop a fully functional UAV-based diagnostic tool, capable of detecting and classifying accurately failure modes in PV systems, while also locating the exact position of faulty modules.

2.
Sensors (Basel) ; 16(11)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27827883

RESUMO

Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA