Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 83(18): 11154-11166, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30091595

RESUMO

Two environmentally benign methods for the synthesis of quinazolines via acceptorless dehydrogenative coupling of 2-aminobenzylamine with benzyl alcohol (Path A) and 2-aminobenzylalcohol with benzonitrile (Path B), catalyzed by cheap, earth abundant and easy to prepare nickel catalysts, containing tetraaza macrocyclic ligands (tetramethyltetraaza[14]annulene (MeTAA) or 6,15-dimethyl-8,17-diphenyltetraaza[14]annulene (MePhTAA)) are reported. A wide variety of substituted quinazolines were synthesized in moderate to high yields starting from cheap and easily available starting precursors. A few control reactions were performed to understand the mechanism and to establish the acceptorless dehydrogenative nature of the catalytic reactions.

2.
Org Biomol Chem ; 16(2): 274-284, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242865

RESUMO

A general, efficient and environmentally benign, one-step synthesis of substituted quinoline derivatives was achieved by acceptorless dehydrogenative coupling of o-aminobenzylalcohols with ketones and secondary alcohols catalyzed by a cheap, earth abundant and easy to prepare nickel catalyst [Ni(MeTAA)], featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)). A wide variety of substituted quinolines were synthesized in high yields starting from readily available o-aminobenzylalcohols and ketones or secondary alcohols. A few controlled reactions were carried out to establish the acceptorless dehydrogenative nature of the reactions.

3.
Inorg Chem ; 56(22): 14084-14100, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29120616

RESUMO

The new redox-noninnocent azoaromatic pincers 2-(arylazo)-1,10-phenanthroline (L1) and 2,9-bis(phenyldiazo)-1,10-phenanthroline (L2) are reported. The ligand L1 is a tridentate pincer having NNN donor atoms, whereas L2 is tetradentate having two azo-N donors and two N-donor atoms from the 1,10-phenanthroline moiety. Reaction of FeCl2 with L1 or L2 produced the pentacoordinated mixed-ligand Fe(II) complexes FeL1Cl2 (1) and FeL2Cl2 (2), respectively. Homoleptic octahedral Fe(II) complexes, mer-[Fe(L1)2](ClO4)2 [3](ClO4)2 and mer-[Fe(L2)2](ClO4)2 [4](ClO4)2, have been synthesized from the reaction of hydrated Fe(ClO4)2 and L1 or L2. The ligand L2, although having four donor sites available for coordination, binds the iron center in a tridentate fashion with one uncoordinated pendant azo function. Molecular and electronic structures of the isolated complexes have been scrutinized thoroughly by various spectroscopic techniques, single-crystal X-ray crystallography, and density functional theory. Beyond mere characterization, complexes 1 and 2 were successfully used as catalysts for the aerobic oxidation of primary and secondary benzylic alcohols. A wide variety of substituted benzyl alcohols were found to be converted to the corresponding carbonyl compounds in high yields, catalyzed by complex 1. Several control reactions were carried out to understand the mechanism of this alcohol oxidation reactions.

4.
J Org Chem ; 82(14): 7165-7175, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28653839

RESUMO

In this paper, we report a general, efficient, and environmentally benign method for the one-pot cascade synthesis of quinazolin-4(3H)-ones via acceptorless dehydrogenative coupling of o-aminobenzamide with alcohols catalyzed by a simple Ni(II) catalyst, [Ni(MeTAA)], featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)). A wide variety of substituted quinazolin-4(3H)-ones were synthesized in high yields starting from readily available benzyl alcohols and o-aminobenzamides. Several controlled reactions along with deuterium labeling studies were carried out to establish the acceptorless dehydrogenative nature of the reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA