Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112926

RESUMO

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of several variants of concern (VOC) with increased immune evasion and transmissibility. This has motivated studies to assess protection conferred by earlier strains following infection or vaccination to each new VOC. We hypothesized that while NAbs play a major role in protection against infection and disease, a heterologous reinfection or challenge may gain a foothold in the upper respiratory tract (URT) and result in a self-limited viral infection accompanied by an inflammatory response. To test this hypothesis, we infected K18-hACE2 mice with SARS-CoV-2 USA-WA1/2020 (WA1) and, after 24 days, challenged with WA1, Alpha, or Delta. While NAb titers against each virus were similar across all cohorts prior to challenge, the mice challenged with Alpha and Delta showed weight loss and upregulation of proinflammatory cytokines in the URT and lower RT (LRT). Mice challenged with WA1 showed complete protection. We noted increased levels of viral RNA transcripts only in the URT of mice challenged with Alpha and Delta. In conclusion, our results suggested self-limiting breakthrough infections of Alpha or Delta in the URT, which correlated with clinical signs and a significant inflammatory response in mice.


Assuntos
COVID-19 , Infecções Respiratórias , Animais , Humanos , Camundongos , SARS-CoV-2/genética
2.
Sci Transl Med ; 15(691): eabl9344, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043558

RESUMO

Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina do Leste , Humanos , Cavalos , Animais , Camundongos , Estados Unidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos C57BL , Encéfalo
3.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992320

RESUMO

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , Genótipo , Fenótipo , Inflamação , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
4.
Nat Commun ; 14(1): 1733, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977673

RESUMO

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases , Mamíferos/metabolismo
5.
J Chem Inf Model ; 63(5): 1438-1453, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36808989

RESUMO

Direct-acting antivirals for the treatment of the COVID-19 pandemic caused by the SARS-CoV-2 virus are needed to complement vaccination efforts. Given the ongoing emergence of new variants, automated experimentation, and active learning based fast workflows for antiviral lead discovery remain critical to our ability to address the pandemic's evolution in a timely manner. While several such pipelines have been introduced to discover candidates with noncovalent interactions with the main protease (Mpro), here we developed a closed-loop artificial intelligence pipeline to design electrophilic warhead-based covalent candidates. This work introduces a deep learning-assisted automated computational workflow to introduce linkers and an electrophilic "warhead" to design covalent candidates and incorporates cutting-edge experimental techniques for validation. Using this process, promising candidates in the library were screened, and several potential hits were identified and tested experimentally using native mass spectrometry and fluorescence resonance energy transfer (FRET)-based screening assays. We identified four chloroacetamide-based covalent inhibitors of Mpro with micromolar affinities (KI of 5.27 µM) using our pipeline. Experimentally resolved binding modes for each compound were determined using room-temperature X-ray crystallography, which is consistent with the predicted poses. The induced conformational changes based on molecular dynamics simulations further suggest that the dynamics may be an important factor to further improve selectivity, thereby effectively lowering KI and reducing toxicity. These results demonstrate the utility of our modular and data-driven approach for potent and selective covalent inhibitor discovery and provide a platform to apply it to other emerging targets.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Pandemias , Inteligência Artificial , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
6.
Viruses ; 14(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35891384

RESUMO

The Syrian hamster has proved useful in the evaluation of therapeutics and vaccines for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). To advance the model for preclinical studies, we conducted serial sacrifice of lungs, large pulmonary vessels, and hearts from male and female Syrian hamsters for days 1-4, and 8 post-infection (dpi) following infection with a high dose of SARS-CoV-2. Evaluation of microscopic lung histopathology scores suggests 4 and 8 dpi as prime indicators in the evaluation of moderate pathology with bronchial hyperplasia, alveolar involvement and bronchiolization being key assessments of lung disease and recovery, respectively. In addition, neutrophil levels, red blood cell count and hematocrit showed significant increases during early infection. We present histological evidence of severe damage to the pulmonary vasculature with extensive leukocyte transmigration and the loss of endothelial cells and tunica media. Our evidence of endothelial and inflammatory cell death in the pulmonary vessels suggests endothelialitis secondary to SARS-CoV-2 epithelial cell infection as a possible determinant of the pathological findings along with the host inflammatory response. Lastly, pathological examination of the heart revealed evidence for intracardiac platelet/fibrin aggregates in male and female hamsters on 8 dpi, which might be indicative of a hypercoagulative state in these animals.


Assuntos
COVID-19 , Animais , Cricetinae , Modelos Animais de Doenças , Células Endoteliais , Feminino , Pulmão/patologia , Masculino , Mesocricetus , SARS-CoV-2
7.
Res Sq ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35898342

RESUMO

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with k inact /K I = 10,000 M - 1 s - 1 , achieved sub-µM EC 50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

8.
Nat Commun ; 13(1): 2268, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477935

RESUMO

Emerging SARS-CoV-2 variants continue to threaten the effectiveness of COVID-19 vaccines, and small-molecule antivirals can provide an important therapeutic treatment option. The viral main protease (Mpro) is critical for virus replication and thus is considered an attractive drug target. We performed the design and characterization of three covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2 created by splicing components of hepatitis C protease inhibitors boceprevir and narlaprevir, and known SARS-CoV-1 protease inhibitors. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrates that a Cys145 thiolate reaction with the inhibitor's keto-warhead creates a negatively charged oxyanion. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 reveal unconventional F···O interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding. BBH-1, BBH-2 and NBH-2 exhibit comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Vacinas contra COVID-19 , Proteases 3C de Coronavírus , Ciclopropanos , Humanos , Lactamas , Leucina/análogos & derivados , Nitrilas , Prolina/análogos & derivados , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Sulfonas , Ureia
9.
Res Sq ; 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35169792

RESUMO

The COVID-19 pandemic continues to disrupt everyday life, with constantly emerging SARS-CoV-2 variants threatening to render current vaccines ineffective. Small-molecule antivirals can provide an important therapeutic treatment option that is subject to challenges caused by the virus variants. The viral main protease (M pro ) is critical for the virus replication and thus is considered an attractive drug target for specific protease inhibitors. We performed the design and characterization of three reversible covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2, whose structures were derived from those of hepatitis C protease inhibitors boceprevir and narlaprevir. A joint X-ray/neutron structure of the M pro /BBH-1 complex demonstrated that a Cys145 thiolate reaction with the inhibitor’s keto-warhead creates a negatively charged oxyanion, similar to that proposed for the M pro -catalyzed peptide bond hydrolysis. Protonation states of the ionizable residues in the M pro active site adapt to the inhibitor, which appears to be an intrinsic property of M pro . Structural comparisons of the hybrid inhibitors with PF-07321332 revealed unconventional interactions of PF-07321332 with M pro which may explain its more favorable enthalpy of binding and consequently higher potency. BBH-1, BBH-2 and NBH-2 demonstrated comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.

10.
Res Sq ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34642689

RESUMO

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein (ISG15) from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we have designed a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibited PLpro with kinact/KI = 10,000 M- 1 s- 1, achieved sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and did not inhibit a panel of human deubiquitinases at > 30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validated our design strategy and established the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.

11.
J Chem Inf Model ; 61(11): 5469-5483, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34666487

RESUMO

COVID-19, an acute viral pneumonia, has emerged as a devastating pandemic. Drug repurposing allows researchers to find different indications of FDA-approved or investigational drugs. In this current study, a sequence of pharmacophore and molecular modeling-based screening against COVID-19 Mpro (PDB: 6LU7) suggested a subset of drugs, from the Drug Bank database, which may have antiviral activity. A total of 44 out of 8823 of the most promising virtual hits from the Drug Bank were subjected to molecular dynamics simulation experiments to explore the strength of their interactions with the SARS-CoV-2 Mpro active site. MD findings point toward three drugs (DB04020, DB12411, and DB11779) with very low relative free energies for SARS-CoV-2 Mpro with interactions at His41 and Met49. MD simulations identified an additional interaction with Glu166, which enhanced the binding affinity significantly. Therefore, Glu166 could be an interesting target for structure-based drug design. Quantitative structural-activity relationship analysis was performed on the 44 most promising hits from molecular docking-based virtual screening. Partial least square regression accurately predicted the values of independent drug candidates' binding energy with impressively high accuracy. Finally, the EC50 and CC50 of 10 drug candidates were measured against SARS-CoV-2 in cell culture. Nilotinib and bemcentinib had EC50 values of 2.6 and 1.1 µM, respectively. In summary, the results of our computer-aided drug design provide a roadmap for rational drug design of Mpro inhibitors and the discovery of certified medications as COVID-19 antiviral therapeutics.


Assuntos
COVID-19 , Inibidores de Proteases , Antivirais/farmacologia , Proteases 3C de Coronavírus , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pirimidinas , SARS-CoV-2
12.
ACS Pharmacol Transl Sci ; 3(6): 1278-1292, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330842

RESUMO

The urgent need for a cure for early phase COVID-19 infected patients critically underlines drug repositioning strategies able to efficiently identify new and reliable treatments by merging computational, experimental, and pharmacokinetic expertise. Here we report new potential therapeutics for COVID-19 identified with a combined virtual and experimental screening strategy and selected among already approved drugs. We used hydroxychloroquine (HCQ), one of the most studied drugs in current clinical trials, as a reference template to screen for structural similarity against a library of almost 4000 approved drugs. The top-ranked drugs, based on structural similarity to HCQ, were selected for in vitro antiviral assessment. Among the selected drugs, both zuclopenthixol and nebivolol efficiently block SARS-CoV-2 infection with EC50 values in the low micromolar range, as confirmed by independent experiments. The anti-SARS-CoV-2 potential of ambroxol, amodiaquine, and its active metabolite (N-monodesethyl amodiaquine) is also discussed. In trying to understand the "hydroxychloroquine" mechanism of action, both pK a and the HCQ aromatic core may play a role. Further, we show that the amodiaquine metabolite and, to a lesser extent, zuclopenthixol and nebivolol are active in a SARS-CoV-2 titer reduction assay. Given the need for improved efficacy and safety, we propose zuclopenthixol, nebivolol, and amodiaquine as potential candidates for clinical trials against the early phase of the SARS-CoV-2 infection and discuss their potential use as adjuvant to the current (i.e., remdesivir and favipiravir) COVID-19 therapeutics.

13.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32878897

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that can cause neurological disease and death in humans and equines following transmission from infected mosquitoes. Despite the continued epidemic threat of VEEV, and its potential use as a bioterrorism agent, there are no FDA-approved antivirals or vaccines for treatment or prevention. Previously, we reported the discovery of a small molecule, ML336, with potent antiviral activity against VEEV. To further explore the population-level resistance profiles of ML336, we developed a whole-genome next-generation sequencing (NGS) approach to examine single nucleotide polymorphisms (SNPs) from virus passaged in dose escalation studies in a nonhuman primate kidney epithelial and a human astrocyte cell line, Vero 76 and SVGA, respectively. We passaged VEEV TC-83 in these two cell lines over seven concentrations of ML336, starting at 50 nM. NGS revealed several prominent mutations in the nonstructural protein (nsP) 3 and nsP4 genes that emerged consistently in these two distinct in vitro environments-notably, a mutation at Q210 in nsP4. Several of these mutations were stable following passaging in the absence of ML336 in Vero 76 cells. Network analyses showed that the trajectory of resistance differed between Vero and SVGA. Moreover, the penetration of SNPs was lower in SVGA. In conclusion, we show that the microenvironment influenced the SNP profile of VEEV TC-83. Understanding the dynamics of resistance in VEEV against newly developed antiviral compounds will guide the design of optimal drug candidates and dosing regimens for minimizing the emergence of resistant viruses.IMPORTANCE RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.


Assuntos
Benzamidas/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/genética , Piperazinas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Encefalomielite Equina Venezuelana , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Células Vero , Proteínas Virais/genética
14.
Front Microbiol ; 10: 260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858830

RESUMO

Long-read nanopore sequencing by a MinION device offers the unique possibility to directly sequence native RNA. We combined an enzymatic poly-A tailing reaction with the native RNA sequencing to (i) sequence complex population of single-stranded (ss)RNA viruses in parallel, (ii) detect genome, subgenomic mRNA/mRNA simultaneously, (iii) detect a complex transcriptomic architecture without the need for assembly, (iv) enable real-time detection. Using this protocol, positive-ssRNA, negative-ssRNA, with/without a poly(A)-tail, segmented/non-segmented genomes were mixed and sequenced in parallel. Mapping of the generated sequences on the reference genomes showed 100% length recovery with up to 97% identity. This work provides a proof of principle and the validity of this strategy, opening up a wide range of applications to study RNA viruses.

15.
Am J Physiol Endocrinol Metab ; 310(11): E1003-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117006

RESUMO

We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Radicais Livres/toxicidade , Mitocôndrias Musculares/metabolismo , Material Particulado/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Gravidez/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia
16.
Pathog Dis ; 71(2): 249-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687986

RESUMO

Burkholderia pseudomallei (Bp) is the causal agent of a high-morbidity/mortality disease syndrome known as melioidosis. This syndrome can range from acute fulminate disease to chronic, local, and disseminated infections that are often difficult to treat because Bp exhibits resistance to many antibiotics. Bp is a prime candidate for use in biologic warfare/terrorism and is classified as a Tier-1 select agent by HHS and APHIS. It is known that inbred mouse strains display a range of susceptibility to Bp and that the murine infection model is ideal for studying acute melioidosis. Here, we exploit a powerful mouse genetics resource that consists of a large family of BXD-type recombinant inbred strains, to perform genome-wide linkage analysis of the weight loss phenotype following pneumonic infection with Bp. We infected parental mice and 32 BXD strains with 50-100 CFU of Bp (strain 1026b) and monitored weight retention each day over an eleven-day time course. Using the computational tools in GeneNetwork, we performed genome-wide linkage analysis to identify an interval on chromosome 12 that appears to control the weight retention trait. We then analyzed and ranked positional candidate genes in this interval, several of which have intriguing connections with innate immunity, calcium homeostasis, lipid transport, host cell growth and development, and autophagy.


Assuntos
Infecções por Burkholderia/patologia , Pneumonia/patologia , Redução de Peso/genética , Animais , Burkholderia pseudomallei/isolamento & purificação , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Ligação Genética , Hibridização Genética , Masculino , Camundongos Endogâmicos
17.
Mol Microbiol ; 86(3): 611-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966934

RESUMO

Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Francisella/enzimologia , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Lipídeo A/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Feminino , Francisella/genética , Francisella/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/genética , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Alinhamento de Sequência , Virulência
18.
PLoS One ; 7(2): e31359, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384012

RESUMO

Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.


Assuntos
Anestesia/métodos , Francisella tularensis/metabolismo , Administração Intranasal , Animais , Feminino , Isoflurano/administração & dosagem , Ketamina/administração & dosagem , Cinética , Proteínas Luminescentes/química , Camundongos , Camundongos Endogâmicos BALB C , Modelos Genéticos , Photorhabdus/metabolismo , Regiões Promotoras Genéticas , Tularemia/genética , Tularemia/prevenção & controle , Xilazina/administração & dosagem
19.
BMC Microbiol ; 11: 179, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819572

RESUMO

BACKGROUND: A number of studies have revealed that Francisella tularensis (FT) suppresses innate immune responses such as chemokine/cytokine production and neutrophil recruitment in the lungs following pulmonary infection via an unidentified mechanism. The ability of FT to evade early innate immune responses could be a very important virulence mechanism for this highly infectious bacterial pathogen. RESULTS: Here we describe the characterization of a galU mutant strain of FT live vaccine strain (LVS). We show that the galU mutant was highly attenuated in a murine model of tularemia and elicited more robust innate immune responses than the wild-type (WT) strain. These studies document that the kinetics of chemokine expression and neutrophil recruitment into the lungs of mice challenged with the galU mutant strain are significantly more rapid than observed with WT FT, despite the fact that there were no observed differences in TLR2 or TLR4 signaling or replication/dissemination kinetics during the early stages of infection. We also show that the galU mutant had a hypercytotoxic phenotype and more rapidly induced the production of IL-1ß following infection either in vitro or in vivo, indicating that attenuation of the galU mutant strain may be due (in part) to more rapid activation of the inflammasome and/or earlier death of FT infected cells. Furthermore, we show that infection of mice with the galU mutant strain elicits protective immunity to subsequent challenge with WT FT. CONCLUSIONS: Disruption of the galU gene of FTLVS has little (if any) effect on in vivo infectivity, replication, or dissemination characteristics, but is highly attenuating for virulence. The attenuated phenotype of this mutant strain of FT appears to be related to its increased ability to induce innate inflammatory responsiveness, resulting in more rapid recruitment of neutrophils to the lungs following pneumonic infection, and/or to its ability to kill infected cells in an accelerated fashion. These results have identified two potentially important virulence mechanisms used by FT. These findings could also have implications for design of a live attenuated vaccine strain of FT because sublethal infection of mice with the galU mutant strain of FTLVS promoted development of protective immunity to WT FTLVS.


Assuntos
Francisella tularensis/genética , Francisella tularensis/patogenicidade , Tularemia/microbiologia , Tularemia/patologia , UTP-Glucose-1-Fosfato Uridililtransferase/deficiência , Fatores de Virulência/deficiência , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Francisella tularensis/imunologia , Humanos , Interleucina-1beta/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Doenças dos Roedores/microbiologia , Doenças dos Roedores/patologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...