Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37194959

RESUMO

The entire world is aware of the serious issue of global warming and therefore utilizing renewable energy sources is the most encouraging steps toward solving energy crises, and as a result, energy storage solutions are necessary. The supercapacitors (SCs) have a high-power density and a long cycle life, they are promising as an electrochemical conversion and storage device. In order to achieve high electrochemical performance, electrode fabrication must be implemented properly. Electrochemically inactive and insulating binders are utilized in the conventional slurry coating method of making electrodes to provide adhesion between the electrode material and the substrate. This results in an undesirable "dead mass," which lowers the overall device performance. In this review, we focused on binder-free SCs electrodes based on transition metal oxides and composites. With the best examples providing the critical aspects, the benefits of binder-free electrodes over slurry-coated electrodes are addressed. Additionally, different metal-oxides used in the fabrication of binder-free electrodes are assessed, taking into account the various synthesis methods, giving an overall picture of the work done for binder-free electrodes. The future outlook is provided along with the benefits and drawbacks of binder-free electrodes based on transition metal oxides.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37947681

RESUMO

The polyacrylamide/gelatin-iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater. The adsorption capacity (qe, mg/g) of P-G-ILO nanohybrid was higher (254, 256, and 258 mg/g) than the ILO nanoparticle (239, 234, and 233 mg/g). The Freundlich isotherm model was the best fitted, as it gives the higher values of correlation coefficient (R2 = 0.982, 0.991 and 0.981) and lower value of standard error of estimate (SEE = 6.30, 4.42 and 6.52), which suggested the multilayered adsorption of DF over the designed P-G-ILO nanohybrid and followed the pseudo second order kinetic model (PSO kinetic model) adsorption. The thermodynamic study reveals that adsorption was spontaneous and endothermic in nature and randomness onto the P-G-ILO nanohybrids surface increases after the DF adsorption. The mechanism of adsorption of DF demonstrated that the adsorption was mainly due to the electrostatic interaction, hydrogen bonding, and dipole interaction. P-G-ILO nanohybrid was reusable for up to five adsorption/desorption cycles.

3.
Biotechnol Genet Eng Rev ; : 1-32, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37226482

RESUMO

One of the most essential chemical processes that is utilized in the manufacturing of a great deal of contemporary goods is called heterogeneously catalyzed reactions, and it is also one of the most fascinating. Metallic nanostructures are heterogeneous catalysts for range reactions due to their huge surface area, large assembly of active surface sites, and quantum confinement effects. Unprotected metal nanoparticles suffer from irreversible agglomeration, catalyst poisoning, and limited life cycle. To circumvent these technical disadvantages, catalysts are frequently spread on chemically inert materials like as mesoporous Al2O3, ZrO2, and different types of ceramic material. In this research, plentiful bauxite residue is used to create a low-cost alternative catalytic material. We have hydrogenated p-Nitrophenol to p-Aminophenol on bauxite residue (BR) supported silver nanocomposites (Ag NCs). The phase and crystal structure, bond structure and morphological analysis of the developed material will be done XRD, FTIR, and SEM-EDX respectively. The ideal conditions were 150 ppm of catalyst, 0.1 mM of p-NP, and 10 minutes overall up-to 99% conversion of p-NP to p-AP. A multi-variable predictive model created using Response Surface Methodology (RSM) and a data-based Artificial Neural Network (ANN) model were found to be the best ways to predict the maximum conversion efficiency. ANN models predicted efficiency more accurately than RSM models, and the strong agreement between model predictions and experimental data was indicated by their low relative error (RE0.10), high regression coefficient (R2>0.97), and Willmott-d index (dwill-index > 0.95) values.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678112

RESUMO

The development of nanomaterials with different shapes and sizes and which are utilized as effective materials for energy and environmental applications constitutes a challenge for researchers [...].

5.
J Adv Res ; 50: 107-116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36280142

RESUMO

INTRODUCTION: The energy industry has been challenged by the current high population and high energy consumption, forcing the development of effective and efficient supercapacitor devices. The crucial issues until now have been high production cost, deprived cyclic stability, and squat energy density. To resolve these problems, various approaches have been taken, such as the development of long-life electrode materials with high capacity, rapid charging, and slow discharging to overcome poor life cycle stability. OBJECTIVES: In the present work we focus on fabricating cost-effective unique-morphology, high-surface-area alpha-Co(OH)2 for application in an aqueous-electrolyte symmetric supercapacitor. METHODS: In this study, hierarchical nanoflakes assembled in three-dimensional (3D) flower-shaped cobalt hydroxide (HN-3DF-α-Co(OH)2) electrode were synthesized using the solvothermal method with sodium dodecylbenzene sulfonate (SDBS) and methanol as solvents. Spectroscopic and microscopic techniques were used to characterize fabricated HN-3DF-Co(OH)2, which revealed that the materials electrode exhibited the alpha phase with a hierarchical flower-like structure. A half-cell electrochemical assembly (three-electrode assemble cell) and symmetric full cell (two-electrode assemble cell) were examined in an aqueous electrolyte. RESULTS: In three-electrode assembly cells, HN-3DF-α-Co(OH)2 exhibited 719.5 Fg-1 specific capacitance (Csp) at 1 Ag-1 with excellent cyclic retention stability of approximately 88% after 3000 cycles. In two-electrode symmetric supercapacitive systems, HN-3DF-α-Co(OH)2 achieved a maximum Csp of 70.3 Fg-1 at 0.4 Ag-1 with the highest energy density of approximately 6.25 Wh/kg at a power density of 328.94 W/kg. The fabricated two-electrode assembly cell with the HN-3DF-α-Co(OH)2 electrode retained cyclic stability of approximately 85% after 5000 repeated charge and discharge cycles. CONCLUSION: Solvothermally-synthesized, optimized HN-3DF-α-Co(OH)2 showed outstanding electrochemical performance results in three- and two-electrode systems. This unique aqueous symmetric supercapacitor can be used to design cost-effective symmetric capacitors based on metal hydroxide.

6.
Environ Sci Pollut Res Int ; 30(28): 71464-71471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36001260

RESUMO

The development of electrode materials plays a vital role in energy storage applications to save and store energy. In the present work, the synthesis of nanorod shaped Mn3O4 supported with amorphous carbon (Mn3O4/AC) is reported by the microwave method for supercapacitor application. The as-prepared electrode material was then characterized using microscopic and spectroscopic techniques. The electrochemical supercapacitor performance of Mn3O4/AC was examined by the cyclic voltammetry and galvanostatic charge-discharge method inside the three-electrode assembly cell. The results showed that the Mn3O4/AC delivers the excellent capacitance value of the 569.5 Fg-1 at the current load of 1 Ag-1, higher than the previously reported Mn3O4 based electrodes. The better performance of the Mn3O4/AC is credited to the excellent redox behaviour of the Mn3O4 and the presence of the amorphous carbon, which facilitated the fast ion interaction between the electrode and electrolyte during the electrochemical reaction.


Assuntos
Líquidos Corporais , Nanoestruturas , Nanotubos , Micro-Ondas , Fuligem , Carbono
7.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500789

RESUMO

The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.1, 0.3 and 0.5 g) via the one-step hydrothermal method. The bimetallic Ag-CuO nanohybrids Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 were characterized for their physico-chemical properties. The SEM results showed pleomorphic Ag-CuO crystals; however, the majority of the particles were found in spherical shape. TEM results showed that the Ag-CuO nanohybrids in formulations Ag-C-1 and Ag-C-3 were in the size range of 20-35 nm. Strong signals of Ag, Cu and O in the EDX spectra revealed that the as-synthesized nanostructures are bimetallic Ag-CuO nanohybrids. The obtained Ag-C-1, Ag-C-2, Ag-C-3 and Ag-C-4 nanohybrids have shown their MICs and MBCs against E. coli and C. albicans in the range of 4-12 mg/mL and 2-24 mg/mL, respectively. Furthermore, dose-dependent toxicity and apoptosis process stimulation in the cultured human colon cancer HCT-116 cells have proven the Ag-CuO nanohybrids as promising antiproliferative agents against mammalian cancer.

8.
Sci Rep ; 12(1): 14413, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002578

RESUMO

The fabrication of energy storage electrode materials with high specific capacitance and rapid charge-discharge capability has become an essential and major issue of concern in recent years. In the present work, sphere-shaped interconnected interlinked binder-free nickel sulfide (NiS) grown on the surface of a three-dimensional nickel foam (3DNF) was fabricated by a one-step solvothermal method under optimized synthesis conditions, including different solvents, amounts of sulfur, and experimental reaction times. The fabricated binder-free SS-NiS@3DNF-E electrodes were characterized by a range of spectroscopic and microscopic techniques and further evaluated for their comparative electrochemical supercapacitive performance in half-cell assembly cells. The optimized sphere-shaped interconnected interlinked binder-free SS-NiS@3DNF-E-3 electrode showed an outstanding specific capacitance of 694.0 F/g compared to SS-NiS@3DNF-E-1 (188.0 F/g), SS-NiS@3DNF-E-2 (470.0 F/g), and SS-NiS@3DNF-E-4 (230.0 F/g) as well as excellent cycling stability up to 88% after 6700 continuous charge-discharge cycles, with an energy density of 24.9 Wh/kg at a power density of 250.93 W/kg. The obtained results demonstrate that the interconnected interlinked binder-free NiS@nickel electrode is a potential candidate for energy storage applications.

9.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616015

RESUMO

Electrochemical supercapacitors as an energy storage device have become trademark in current electronic, medical and industrial applications, as they are sources of impressive power output. Supercapacitors supply fast power output, suitable to cover the energy demand of future electronic devices. Electrode material design is a subject of intense research in the area of energy development and advancement, due to its essential role in the electrochemical process of charge storage and the cost of capacitors. The nano-dimensions allow for more electroactive sites, different pore size distributions, and a large specific surface area, making nanostructured electrode materials more promising. Electrode materials based on metal oxides, metal nitrides, and metal carbides are considered ideal for highly efficient electrochemical supercapacitors. Recently, much effort has been devoted to metal nitride-based electrodes and their diverse compositions as they possess higher electrical conductivity and better corrosion resistance, electrochemical stability, and chemical reactivity. Among these, titanium nitride (TiN), possesses high electrochemical stability, outstanding electrical conductivity, and a unique electronic structure. Nanocomposites based on titanium nitrides are known to deliver higher electrochemical performance than pristine nanostructured TiNs due to potential synergetic effects from both the materials. In this paper, recent advancements made in the field of nanostructural TiN electrode materials for SCs are reviewed along with their challenges and future opportunities. Additionally, some of the major techniques involved in the synthesis process are discussed, along with some basic concepts.

10.
Dalton Trans ; 50(41): 14891-14907, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607338

RESUMO

In this work, we demonstrate the microwave assisted solution combustion synthesis of aliovalent cation substituted Zn0.94M0.06-xLixO (M: Fe3+, Al3+, Cr3+) nanoparticles. The structural features, photoluminescence and photocatalytic properties were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and UV-visible and photoluminescence (PL) techniques. We have introduced aliovalent cations such as reducible Fe3+, stable Al3+ and oxidisable Cr3+ ions into ZnO and investigated its structural and optical properties. The charge balance and defect stoichiometric composition of ZnO were also studied by co-doping with Li+ ions. By understanding the photoluminescence and photocatalytic activity of doped and co-doped ZnO nanoparticles, the defect chemistry of ZnO is explained in detail. The photocatalytic efficiency of various doped and co-doped ZnO catalysts was compared with respect to the degradation of rhodamine B dye. Among them, the CZO, AZO and L3AZO catalysts showed enhanced photo-degradation efficiencies of 98.1%, 97.6% and 96.6%, respectively, which are high as compared to that of ZnO (89%). This work presents a novel and straightforward, low-cost, tunable and scalable fabrication protocol for highly efficient ZnO-based photocatalysts for practical applications.

11.
Materials (Basel) ; 14(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34501128

RESUMO

In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition. The electrochemical performance of prepared samples was studied by cyclic voltammetry and galvanostatic charge-discharge in a 2M KOH electrolyte solution. The CuO nanosheets provided excellent electrical conductivity and the rGO sheets provided a large surface area with good mesoporosity that increases electron and ion mobility during the redox process. Furthermore, the highly conductive Ag nanoparticles upon the rGO@CuO surface further enhanced electrochemical performance by providing extra channels for charge conduction. The ternary Ag-rGO@CuO nanocomposite shows a very high specific capacitance of 612.5 to 210 Fg-1 compared against rGO@CuO which has a specific capacitance of 375 to 87.5 Fg-1 and the CuO nanosheets with a specific capacitance of 113.75 to 87.5 Fg-1 at current densities 0.5 and 7 Ag-1, respectively.

12.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204486

RESUMO

The development of efficient materials for energy storage applications has attracted considerable attention, especially for supercapacitors and batteries that are the most promising and important power sources in everyday life. For this purpose, a suitable and efficient current collector must be determined and its behavior with respect to various solvents when it is used as an electrode material for energy storage applications should be understood. In this work, we studied the effect of washing three-dimensional nickel foam using different concentrations of hydrochloric acid and ethanol on the surface characteristics, electrochemical behavior, and storage performance of the foam. Additionally, we observed the different types of acidic treatments that improved the electrochemical and storage performances of the three-dimensional nickel foam. The surface characterization results show that acidic conditions with a concentration of 3M changes the surface morphology from a flat/hill-like structure to a nanosheet/nanoflake-like structure without any further treatment. This structure provides a nano-channel and a large number of surface charges during the electrochemical reaction. The results of this study show that pretreatment of 3D-NF is highly important and recommended. The present work also contributes to the knowledgebase on pretreatment of 3D-NF and its optimization.

13.
Nanotechnology ; 32(36)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34125718

RESUMO

Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.

14.
Anal Methods ; 12(46): 5562-5571, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33226391

RESUMO

This work demonstrated the development of conducting poly(chrysoidine G) (PCG)-gold nanoparticle (AuNP)-modified fluorine-doped tin oxide (F : SnO2, FTO) film-coated glass electrodes for the sensitive electrochemical detection of nitrite (NO2-). The homogeneously distributed PCG nanoparticle layer was deposited onto the FTO electrode by cyclic voltammetry sweeping. AuNPs were then anchored onto the PCG/FTO electrode by the chemical reduction of pre-adsorbed Au3+ ions. The as-prepared AuNP/PCG/FTO electrode exhibited excellent electrocatalytic activity for the oxidation of NO2- with high sensitivity (approximately 0.63 µA cm-2µM-1) and a low limit of detection (0.095 µM), which is relevant within the normal concentration range of NO2- in human bodily fluids. The AuNP/PCG/FTO sensor showed sufficient reproducibility, repeatability, low interference, and strong recovery for NO2- detection in food samples. These results indicate that the AuNP/PCG nanocomposites have immense potential for the electrochemical detection of other biologically important compounds.


Assuntos
Ouro , Nanopartículas Metálicas , Técnicas Eletroquímicas , Inocuidade dos Alimentos , Humanos , Nitritos/análise , Reprodutibilidade dos Testes , p-Aminoazobenzeno/análogos & derivados
15.
Nanomicro Lett ; 12(1): 25, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34138061

RESUMO

Supercapacitors have attracted much attention in the field of electrochemical energy storage. However, material preparation, stability, performance as well as power density limit their applications in many fields. Herein, a sponge-like red phosphorus@graphene (rP@rGO) negative electrode and a Ni2P positive electrode were prepared using a simple one-step method. Both electrodes showed excellent performances (294 F g-1 and 1526.6 F g-1 for rP@rGO and Ni2P, respectively), which seem to be the highest among all rP@rGO- and Ni2P-based electrodes reported so far. The asymmetric solid-state supercapacitor was assembled by sandwiching a gel electrolyte-soaked cellulose paper between rP@rGO and Ni2P as the negative and positive electrodes. Compared to other asymmetric devices, the device, which attained a high operating window of up to 1.6 V, showed high energy and power density values of 41.66 and 1200 W kg-1, respectively. It also has an excellent cyclic stability up to 88% after various consecutive charge/discharge tests. Additionally, the device could power commercial light emitting diodes and fans for 30 s. So, the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications .

16.
Sci Rep ; 9(1): 10225, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308450

RESUMO

Layered Sn-based chalcogenides and heterostructures are widely used in batteries and photocatalysis, but its utilizations in a supercapacitor is limited by its structural instability and low conductivity. Here, SnSx thin films are directly and conformally deposited on a three-dimensional (3D) Ni-foam (NF) substrate by atomic layer deposition (ALD), using tetrakis(dimethylamino)tin [TDMASn, ((CH3)2N)4Sn] and H2S that serves as an electrode for supercapacitor without any additional treatment. Two kinds of ALD-SnSx films grown at 160 °C and 180 °C are investigated systematically by X-ray diffractometry, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). All of the characterization results indicate that the films deposited at 160 °C and 180 °C predominantly consist of hexagonal structured-SnS2 and orthorhombic-SnS phases, respectively. Moreover, the high-resolution TEM analyses (HRTEM) reveals the (001) oriented polycrystalline hexagonal-SnS2 layered structure for the films grown at 160 °C. The double layer capacitance with the composite electrode of SnSx@NF grown at 160 °C is higher than that of SnSx@NF at 180 °C, while pseudocapacitive Faradaic reactions are evident for both SnSx@NF electrodes. The superior performance as an electrode is directly linked to the layered structure of SnS2. Further, the optimal thickness of ALD-SnSx thin film is found to be 60 nm for the composite electrode of SnSx@NF grown at 160 °C by controlling the number of ALD cycles. The optimized SnSx@NF electrode delivers an areal capacitance of 805.5 mF/cm2 at a current density of 0.5 mA/cm2 and excellent cyclic stability over 5000 charge/discharge cycles.

17.
Sci Rep ; 9(1): 9140, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235726

RESUMO

Interest in pseudocapacitive materials, especially cuprous oxide, has grown owing to its various advantageous properties and application as electrode materials in the energy storage devices. The work presented here, a cubic Cu2O framework was synthesized using a simple and one-step modified polyol-assisted (metal-organic framework) solvothermal method. The structural configuration was rationalized by systematically studying the effect of the reaction time on the morphology and growth of the Cu2O. In addition, a range of microscopic and spectroscopic techniques was employed to further characterize the obtained cubic Cu2O. The morphological effect on the electrochemical supercapacitive performance of the obtained cubic Cu2O was also examined by cyclic-voltammetry (CV) and galvanostatic-charge-discharge (G-C-D) method. The obtained outcome shows that the cubic Cu2O synthesized using a reaction time of 12 h (Cu2O-12h; Csp ~365 Fg-1) exhibited superior capacitive performance as compared to the cubic Cu2O synthesized at 8 h (Cu2O-8h; Csp ~151 Fg-1) and 10 h (Cu2O-10h; Csp ~195 Fg-1) at the current density of 0.75 Ag-1. Furthermore, the Cu2O-12h electrode exhibits energy density of 16.95 Wh/Kg at a power density of 235.4 W/Kg and higher power density of 2678.5 W/Kg at low current density. In particular, the cube-like Cu2O-12h exhibited excellent capacitive performance and rate capability as compared to Cu2O-8h and Cu2O-10h, owing to its unique three-dimensional morphology, which facilitates the formation of various active sites for intercalation of the electrolyte during the electrochemical process. These results show the as-obtained Cu2O could be a promising supercapacaitive electrode material for various applications.

18.
J Infect Public Health ; 12(1): 49-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30274896

RESUMO

BACKGROUND: Dengue is a rapidly emerging arthropod borne viral infection affecting tropical and sub-tropical regions of the world. Dengue is an acute febrile illness but sometimes causes more fatal complications like dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). Delhi, the capital of India has become hyper endemic for dengue virus because all the four serotypes are circulating here. METHODS: The present study describes the identification of dengue virus from clinical samples collected from the suspected dengue patients from New Delhi, India during 2016. The CprM region of Dengue virus genome was analyzed for phylogenetic, selection pressure and Shannon entropy analyses. RESULTS: The present study reports circulation of a single serotype (DENV-3) in New Delhi, during 2016. The phylogenetic analysis revealed that Indian subcontinent (genotype III) of DENV-3 was circulating in Delhi during this period. Neutral selection pressure in the analyzed region revealed relatively conserved nature of this part of the Dengue virus genome. Amino acid at 31 was positively selected and had high entropy value suggesting probability of variation at this position. CONCLUSIONS: The changing trend in circulation of dengue virus serotypes necessitates the continuous epidemiological surveillance for the dengue outbreaks in this region.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Análise por Conglomerados , Dengue/sangue , Vírus da Dengue/classificação , Surtos de Doenças , Entropia , Feminino , Variação Genética , Genoma Viral , Genótipo , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/genética , Seleção Genética , Sorogrupo , Adulto Jovem
19.
ACS Omega ; 3(2): 1581-1588, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458481

RESUMO

SnS2 is an emerging candidate for an electrode material because of the considerable interlayer spaces in its crystal structures and the large surface area. SnS2 as a photocatalyst and in lithium ion batteries has been reported. On the other hand, there are only a few reports of their supercapacitor applications. In this study, sheetlike SnS2 (SL-SnS2), flowerlike SnS2 (FL-SnS2), and ellipsoid-like SnS2 (EL-SnS2) were fabricated via a facile solvothermal route using different types of solvents. The results suggested that the FL-SnS2 exhibited better capacitive performance than the SL-SnS2 and EL-SnS2, which means that the morphology has a significant effect on the electrochemical reaction. The FL-SnS2 displayed higher supercapacitor performance with a high capacity of approximately ∼431.82 F/g at a current density of 1 A/g. The remarkable electrochemical performance of the FL-SnS2 could be attributed to the large specific surface area and better average pore size. These results suggest that a suitable solvent is appropriate for the large-scale construction of SnS2 with different morphologies and also has huge potential in the practical applications of high-performance supercapacitors.

20.
J Colloid Interface Sci ; 506: 613-619, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763765

RESUMO

The development of manganese dioxide-based nanocomposites as materials for energy storage applications is advantageous because of its polymorphism behavior and structural flexibility. In this study, manganese dioxide (MnO2) nanorod-intercalated reduced graphene oxide (rGO) nanocomposite was obtained through a simple hydrothermal method and their electrochemical supercapacitance was studied in a three electrode half-assembly electrochemical cell. The basic spectroscopic and diffraction data including Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were employed to characterize the resulting nanocomposite. Cyclic voltammetry and galvanostatic charge-discharge measurements were conducted to evaluate the electrochemical supercapacitance of the rGO-MnO2 nanocomposite electrode. The rGO-MnO2 nanocomposite delivered significantly higher capacitance than the P-MnO2 under similar measurement conditions. This enhanced supercapacitive performance of the rGO-MnO2 nanocomposite was attributed to chemical interactions and the synergistic effect between rGO and MnO2, which was helpful in enhancing the electrical conductivity and providing sufficient space for electrode/electrolyte contact during the electrochemical reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...