Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(6): 3036-3064, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38362717

RESUMO

After the discovery of graphene in 2004, the field of atomically thin crystals has exploded with the discovery of thousands of 2-dimensional materials (2DMs) with unique electronic and optical properties, by making them very attractive for a broad range of applications, from electronics to energy storage and harvesting, and from sensing to biomedical applications. In order to integrate 2DMs into practical applications, it is crucial to develop mass scalable techniques providing crystals of high quality and in large yield. Electrochemical exfoliation is one of the most promising methods for producing 2DMs, as it enables quick and large-scale production of solution processable nanosheets with a thickness well below 10 layers and lateral size above 1 µm. Originally, this technique was developed for the production of graphene; however, in the last few years, this approach has been successfully extended to other 2DMs, such as transition metal dichalcogenides, black phosphorous, hexagonal boron nitride, MXenes and many other emerging 2D materials. This review first provides an introduction to the fundamentals of electrochemical exfoliation and then it discusses the production of each class of 2DMs, by introducing their properties and giving examples of applications. Finally, a summary and perspective are given to address some of the challenges in this research area.

2.
Small ; : e2307232, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072768

RESUMO

This work demonstrates the use of 2D materials (2DMs) as identification tags by exploiting their unique shape. Electrochemical exfoliation enables the production of large quantities of optically accessible 2DMs with diverse morphology and large lateral sizes up to 20 µm. Image processing techniques are used to facilitate shape identification and matching within a dataset of 500 unique nanosheets. Rotational and translation invariant shape matching with no false positive matches between over 100 000 unique shape pairings is shown. The approach enables individual nanosheets to be deposited onto products, such as packaging of luxury goods, pharmaceuticals, banknotes, etc., as a unique seal of authenticity. Quick inspection of the nanoscale tag by optical microscopy allows the shape to be compared against the genuine dataset, enabling unique identification. The optical features of 2D materials, such as Raman and/or photoluminescence signals can be used as an additional chemical fingerprint, making the anticounterfeiting solution very robust.

3.
Nanomaterials (Basel) ; 12(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364636

RESUMO

Two-dimensional (2D) materials are uniquely suited for highly anisotropic thermal transport, which is important in thermoelectrics, thermal barrier coatings, and heat spreaders. Solution-processed 2D materials are attractive for simple, low-cost, and large-scale fabrication of devices on, virtually, any substrate. However, to date, there are only few reports with contrasting results on the thermal conductivity of graphene films, while thermal transport has been hardly measured for other types of solution-processed 2D material films. In this work, inkjet-printed graphene, h-BN and MoS2 films are demonstrated with thermal conductivities of ∼10 Wm-1K-1 and ∼0.3 Wm-1K-1 along and across the basal plane, respectively, giving rise to an anisotropy of ∼30, hardly dependent on the material type and annealing treatment. First-principles calculations indicate that portion of the phonon spectrum is cut-off by the quality of the thermal contact for transport along the plane, yet the ultra-low conductivity across the plane is associated with high-transmissivity interfaces. These findings can drive the design of highly anisotropic 2D material films for heat management applications.

4.
Inorg Chem ; 60(17): 13691-13698, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382790

RESUMO

Quaternary metal chalcogenides have attracted attention as candidates for absorber materials for inexpensive and sustainable solar energy generation. One of these materials, bournonite (orthorhombic CuPbSbS3), has attracted much interest of late for its properties commensurate with photovoltaic energy conversion. This paper outlines the synthesis of bournonite for the first time by a discrete molecular precursor strategy. The metal dithiocarbamate complexes bis(diethyldithiocarbamato)copper (II) (Cu(S2CNEt2)2, (1)), bis(diethyldithiocarbamato)lead (II) (Pb(S2CNEt2)2, (2)), and bis(diethyldithiocarbamato)antimony (III) (Sb(S2CNEt2)3, (3)) were prepared, characterized, and employed as molecular precursors for the synthesis of bournonite powders and the thin film by solvent-less pyrolysis and spray-coat-pyrolysis techniques, respectively. The polycrystalline powders and thin films were characterized by powder X-ray diffraction (p-XRD), which could be indexed to orthorhombic CuPbSbS3. The morphology of the powder at the microscale was studied using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDX) was used to elucidate an approximately 1:1:1:3 Cu/Pb/Sb/S elemental ratio. An optical band gap energy of 1.55 eV was estimated from a Tauc plot, which is close to the theoretical value of 1.41 eV.

5.
Nano Lett ; 20(5): 3411-3419, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233490

RESUMO

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

6.
Nanoscale ; 12(12): 6708-6716, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32186302

RESUMO

We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω sq-1 after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm-3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V-1 s-1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1-1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play.

7.
J Am Chem Soc ; 139(12): 4506-4512, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263580

RESUMO

Heteroatom doping of nanocarbon films can efficiently boost the pseudocapacitance of micro-supercapacitors (MSCs); however, wafer-scale fabrication of sulfur-doped graphene films with a tailored thickness and homogeneous doping for MSCs remains a great challenge. Here we demonstrate the bottom-up fabrication of continuous, uniform, and ultrathin sulfur-doped graphene (SG) films, derived from the peripherical trisulfur-annulated hexa-peri-hexabenzocoronene (SHBC), for ultrahigh-rate MSCs (SG-MSCs) with landmark volumetric capacitance. The SG film was prepared by thermal annealing of the spray-coated SHBC-based film, with assistance of a thin Au protecting layer, at 800 °C for 30 min. SHBC with 12 phenylthio groups decorated at the periphery is critical as a precursor for the formation of the continuous and ultrathin SG film, with a uniform thickness of ∼10.0 nm. Notably, the as-produced all-solid-state planar SG-MSCs exhibited a highly stable pseudocapacitive behavior with a volumetric capacitance of ∼582 F cm-3 at 10 mV s-1, excellent rate capability with a remarkable capacitance of 8.1 F cm-3 even at an ultrahigh rate of 2000 V s-1, ultrafast frequency response with a short time constant of 0.26 ms, and ultrahigh power density of ∼1191 W cm-3. It is noteworthy that these values obtained are among the best values for carbon-based MSCs reported to date.

8.
Nat Nanotechnol ; 12(4): 343-350, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135260

RESUMO

Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing. In addition, none is suitable for thin-film heterostructure fabrication due to the re-mixing of different two-dimensional crystals leading to uncontrolled interfaces and poor device performance. Here, we show a general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication. We show examples of all-inkjet-printed heterostructures, such as large-area arrays of photosensors on plastic and paper and programmable logic memory devices. Finally, in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Tinta , Teste de Materiais , Impressão , Células A549 , Humanos
9.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27862390

RESUMO

Stacked-layer heterostructure films of 2D thiophene nanosheets and electrochemically exfoliated graphene are constructed for ultrahigh-rate all-solid-state flexible pseudocapacitors and micro-supercapacitors with superior volumetric capacitance due to the synergetic effect of the ultrathin pseudocapacitive thiophene nanosheets and the capacitive electrochemically exfoliated graphene.

10.
Chem Commun (Camb) ; 52(33): 5714-7, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27040326

RESUMO

High-quality graphene oxide (GO) with high crystallinity and electrical conductivity as well as in situ doped with nitrogen and sulfur is obtained via the electrochemical exfoliation of graphite. Furthermore, iron incorporated GO sheets show promising catalytic activity and stable methanol tolerance durability when used as electrocatalysts for the oxygen reduction reaction.

11.
J Am Chem Soc ; 137(43): 13927-32, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26460583

RESUMO

Despite the intensive research efforts devoted to graphene fabrication over the past decade, the production of high-quality graphene on a large scale, at an affordable cost, and in a reproducible manner still represents a great challenge. Here, we report a novel method based on the controlled electrochemical exfoliation of graphite in aqueous ammonium sulfate electrolyte to produce graphene in large quantities and with outstanding quality. Because the radicals (e.g., HO(•)) generated from water electrolysis are responsible for defect formation on graphene during electrochemical exfoliation, a series of reducing agents as additives (e.g., (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), ascorbic acid, and sodium borohydride) have been investigated to eliminate these radicals and thus control the exfoliation process. Remarkably, TEMPO-assisted exfoliation results in large graphene sheets (5-10 µm on average), which exhibit outstanding hole mobilities (∼405 cm(2) V(-1) s(-1)), very low Raman I(D)/I(G) ratios (below 0.1), and extremely high carbon to oxygen (C/O) ratios (∼25.3). Moreover, the graphene ink prepared in dimethylformamide can exhibit concentrations as high as 6 mg mL(-1), thus qualifying this material for intriguing applications such as transparent conductive films and flexible supercapacitors. In general, this robust method for electrochemical exfoliation of graphite offers great promise for the preparation of graphene that can be utilized in industrial applications to create integrated nanocomposites, conductive or mechanical additives, as well as energy storage and conversion devices.

12.
ACS Appl Mater Interfaces ; 7(34): 19134-44, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26280572

RESUMO

A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a copper substrate. We find evidence for fundamentally different charge redistribution mechanisms in the two ternary systems, as a consequence of the insulating versus metallic character of the substrates. While electron transfer occurs exclusively from graphene to F6TCNNQ on the quartz support (p-doping of graphene), the Cu substrate electron reservoir induces an additional electron density flow to graphene decorated with the acceptor monolayer. Remarkably, graphene on Cu is n-doped and remains n-doped upon F6TCNNQ deposition. On both substrates, the work function of graphene increases substantially with a F6TCNNQ monolayer atop, the effect being more pronounced (∼1.3 eV) on Cu compared to quartz (∼1.0 eV) because of the larger electrostatic potential drop associated with the long-distance graphene-mediated Cu-F6TCNNQ electron transfer. We thus provide a means to realize high work function surfaces for both p- and n-type doped graphene.

13.
Nat Commun ; 6: 7655, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179498

RESUMO

The outstanding charge transport properties of graphene enable numerous electronic applications of this remarkable material, many of which are expected to operate at ultrahigh speeds. In the regime of ultrafast, sub-picosecond electric fields, however, the very high conduction properties of graphene are not necessarily preserved, with the physical picture explaining this behaviour remaining unclear. Here we show that in graphene, the charge transport on an ultrafast timescale is determined by a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas. The energy of ultrafast electric fields applied to graphene is converted into the thermal energy of its entire charge carrier population, near-instantaneously raising the electronic temperature. The dynamic interplay between heating and cooling of the electron gas ultimately defines the ultrafast conductivity of graphene, which in a highly nonlinear manner depends on the dynamics and the strength of the applied electric fields.

14.
Adv Mater ; 27(27): 4054-61, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26043199

RESUMO

Graphene-based compact nanohybrid films made by alternate deposition of electrochemically exfoliated graphene and mesoporous graphene-conducting polymer nanosheets are constructed for high-energy micro-supercapacitors. They are shown to have a landmark areal capacitance of 368 mF cm(-2) and volumetric capacitance of 736 F cm(-3) .

15.
Adv Mater ; 27(24): 3669-75, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25973974

RESUMO

Ultrathin printable graphene supercapacitors are demonstrated, based on solution-processed electrochemically exfoliated graphene hybrid films on an ultrathin poly(ethylene terephthalate) substrate, exhibiting an unprecedented volumetric capacitance of 348 F cm(-3) , an ultrahigh scan rate of 2000 V s(-1) , and AC line-filtering performance.

16.
Adv Mater ; 27(4): 669-75, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25448315

RESUMO

A novel solution fabrication of large-area, highly conductive graphene films by spray-coating of a hybrid ink of exfoliated graphene (EG)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000) is demonstrated. The fabricated graphene films exhibit excellent mechanical properties, thus enabling their application as bottom electrodes in ultrathin organic photodetector devices with performance comparable to that of the state-of-the-art Si-based inorganic photodetectors.

17.
ACS Nano ; 9(2): 1360-6, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25548883

RESUMO

We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a 6-fold increase in the charge carrier concentration up to 4 × 10(13) cm(-2) at room temperature, indicating highly effective doping. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centers.

18.
Adv Mater ; 26(26): 4552-8, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24782095

RESUMO

Highly uniform, ultrathin, layer-by-layer heteroatom (N, B) co-doped graphene films are fabricated for high-performance on-chip planar micro-supercapacitors with an ultrahigh volumetric capacitance of ∼488 F cm(-3) and excellent rate capability due to the synergistic effect of nitrogen and boron co-doping.

19.
J Am Chem Soc ; 136(16): 6083-91, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24684678

RESUMO

Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.). Exfoliation in these electrolytes leads to graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 µm), low oxidation degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm(2) V(-1) s(-1). Further, highly conductive graphene films (11 Ω sq(-1)) are readily fabricated on an A4-size paper by applying brush painting of a concentrated graphene ink (10 mg mL(-1), in N,N'-dimethylformamide). All-solid-state flexible supercapacitors manufactured on the basis of such graphene films deliver a high area capacitance of 11.3 mF cm(-2) and an excellent rate capability of 5000 mV s(-1). The described electrochemical exfoliation shows great promise for the industrial-scale synthesis of high-quality graphene for numerous advanced applications.

20.
Angew Chem Int Ed Engl ; 53(6): 1570-4, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24459087

RESUMO

Nitrogen-doped carbon nanosheets (NDCN) with size-defined mesopores are reported as highly efficient metal-free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (-0.01 V vs. -0.02 V) and a high diffusion-limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm(-2) ) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long-term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal-free NDCN catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...