Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(16): 2215-2227, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27869163

RESUMO

In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1-Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers, dysregulates DSB repair, enhancing efficiency of likely mutagenic repair, and enabling radiation and cisplatin treatment resistance.


Assuntos
Proteína BRCA1/metabolismo , Reparo do DNA por Junção de Extremidades , Oxirredutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Cisplatino/farmacologia , Resistência a Medicamentos , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Ligação Proteica , Domínios Proteicos , Radiação Ionizante , Oxidorredutase com Domínios WW
2.
Oncogene ; 31(6): 799-804, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21725363

RESUMO

We analyzed the effects of 14 different missense mutations in the RING domain of BRCA1 on the function of the protein in the control of centrosome number in tissue culture cells. Whereas 2 of the 14 BRCA1 variant proteins were neutral in the centrosome duplication assay, missense mutations of zinc-coordinating residues (C24R, C27A, C39Y, H41F, C44F and C47G) and mutations encoding BRCA1 variants M18T and I42V resulted in BRCA1 proteins that caused centrosome amplification. BRCA1 variant proteins I21V, I31M, L52F and D67Y had an intermediate effect on centrosome duplication. In addition, one of the variants, L52F, caused a peculiar phenotype with amplified centrosomes but the centrioles remained paired. By comparison, other BRCA1 variants that caused centrosome amplification had clustering of supernumerary centrosomes with unpaired centrioles. This surprising phenotype suggests that the BRCA1 protein regulates two functions in the control of centrosome duplication: regulation of centrosome number and regulation of centriole pairing. The L52F is unusual as it is defective in only one of these processes. This study analyzes the function of BRCA1 missense mutations in the control of centrosome duplication, a critical step in the maintenance of genetic stability of mammary epithelial cells, and indicates a new function of BRCA1 in the control of centriole pairing.


Assuntos
Proteína BRCA1/genética , Centrossomo/metabolismo , Mutação de Sentido Incorreto , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Centríolos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Immunoblotting , Microscopia de Fluorescência , Interferência de RNA
3.
Oncogene ; 25(2): 298-303, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16170356

RESUMO

BRCA1-dependent ubiquitination activity regulates centrosome number in several tissue culture cell lines derived from breast cells. In these experiments, we asked how BRCA1 inhibits centrosome amplification. In general, supernumerary centrosomes can accumulate by three mechanisms: (1) failed cytokinesis and the accumulation of centrosomes by duplication in a repeated S-phase of the cell cycle, (2) disruption of the licensing of centrosome doubling such that they duplicate at inappropriate times in the cell cycle, or (3) fragmentation of the centrosomes. In this study, we found that inhibition of BRCA1 caused premature separation of centrioles and reduplication. By blocking cells in early S-phase before centrosome amplification secondary to BRCA1 inhibition could occur and then releasing, we found that inhibition of BRCA1 caused centrosome amplification between late S-phase and G2/M before the cell divided. These results suggest that normal BRCA1 function is critical in these cell lines to prevent centriole separation and centrosome reduplication before mitosis.


Assuntos
Proteína BRCA1/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Divisão Celular , Centrossomo/metabolismo , Fase G2 , Glândulas Mamárias Humanas/metabolismo , Fase S , Adenocarcinoma/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Células Cultivadas , Centríolos/metabolismo , Centrossomo/efeitos dos fármacos , Feminino , Humanos , Hidroxiureia/farmacologia , Mitose , RNA Interferente Pequeno/farmacologia
4.
Nature ; 413(6854): 435-8, 2001 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-11574892

RESUMO

In the nucleus of the cell, core RNA polymerase II (pol II) is associated with a large complex called the pol II holoenzyme (holo-pol). Transcription by core pol II in vitro on nucleosomal templates is repressed compared with that on templates of histone-free naked DNA. We found that the transcriptional activity of holo-pol, in contrast to that of core pol II, is not markedly repressed on chromatin templates. We refer to this property of holo-pol as chromatin-dependent coactivation (CDC). Here we show that DNA topoisomerase IIalpha is associated with the holo-pol and is a required component of CDC. Etoposide and ICRF-193, specific inhibitors of topoisomerase II, blocked transcription on chromatin templates, but did not affect transcription on naked templates. Addition of purified topoisomerase IIalpha reconstituted CDC activity in reactions with core pol II. These findings suggest that transcription on chromatin templates results in the accumulation of superhelical tension, making the relaxation activity of topoisomerase II essential for productive RNA synthesis on nucleosomal DNA.


Assuntos
Cromatina/metabolismo , DNA Topoisomerases Tipo II/fisiologia , Isoenzimas/fisiologia , RNA Polimerase II/fisiologia , Transcrição Gênica , Animais , Antígenos de Neoplasias , Bovinos , Proteínas de Ligação a DNA , Dicetopiperazinas , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Células HeLa , Holoenzimas/fisiologia , Humanos , Isoenzimas/antagonistas & inibidores , Modelos Genéticos , Piperazinas/farmacologia , Moldes Genéticos , Inibidores da Topoisomerase II , Fatores de Transcrição/metabolismo
5.
J Biol Chem ; 276(42): 38549-54, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11504724

RESUMO

The BRCA1 protein is known to participate in multiple cellular processes. In these experiments, we resolved four distinct BRCA1-containing complexes. We found BRCA1 associated with the RNA polymerase II holoenzyme (holo-pol), a large mass complex called the fraction 5 complex, the Rad50-Mre11-Nbs1 complex, and a complex that has not been described previously. We observed this new complex after treating cells with hydroxyurea, suggesting that the hydroxyurea-induced complex (HUIC) is involved with the response to DNA replication blockage. After hydroxyurea treatment of cells, BRCA1 content decreased in the holo-pol and the fraction 5 complex, and BRCA1 was redistributed to the HUIC. The HUIC was shown not to contain a number of holo-pol components or the Rad50-Mre11-Nbs1 complex but was associated with the BRCA1-associated RING domain protein BARD1. These data suggest that BRCA1 participates in multiple cellular processes by multiple protein complexes and that the BRCA1 content of these complexes is dynamically altered after DNA replication blockage.


Assuntos
Proteína BRCA1/biossíntese , Proteína BRCA1/química , Proteína BRCA1/isolamento & purificação , Proteínas de Ligação a DNA , Endodesoxirribonucleases , Exodesoxirribonucleases , Holoenzimas/química , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae , Adenoviridae/genética , Bioquímica/métodos , Linhagem Celular , DNA/biossíntese , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Vetores Genéticos , Células HeLa , Holoenzimas/metabolismo , Humanos , Hidroxiureia/farmacologia , Immunoblotting , Proteínas Nucleares/metabolismo , Testes de Precipitina , Ligação Proteica , RNA Polimerase II/metabolismo
7.
Proc Natl Acad Sci U S A ; 97(7): 3148-53, 2000 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-10725406

RESUMO

The functions of most of the 12 subunits of the RNA polymerase II (Pol II) enzyme are unknown. In this study, we demonstrate that two of the subunits, hRPB2 and hRPB10alpha, mediate the regulated stimulation of transcription. We find that the transcriptional coactivator BRCA1 interacts directly with the core Pol II complex in vitro. We tested whether single subunits from Pol II would compete with the intact Pol II complex to inhibit transcription stimulated by BRCA1. Excess purified Pol II subunits hRPB2 or hRPB10alpha blocked BRCA1- and VP16-dependent transcriptional activation in vitro with minimal effect on basal transcription. No other Pol II subunits tested inhibited activated transcription in these assays. Furthermore, hRPB10alpha, but not hRPB2, blocked Sp1-dependent activation.


Assuntos
Proteína BRCA1/metabolismo , RNA Polimerase II/metabolismo , Ativação Transcricional/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/fisiologia , Proteínas Recombinantes/metabolismo , Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo
8.
J Biol Chem ; 275(15): 10719-22, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10753860

RESUMO

Because the vitamin D receptor interacting protein (DRIP) coactivator complex shares components with the RNA polymerase II (Pol II) holoenzyme complex, we tested whether the two protein complexes associate in cellular extracts. On initial purification steps, the DRIP complex copurified with the Pol II holoenzyme. Pol II was found to bind to the vitamin D receptor in a ligand-dependent fashion when either nuclear extracts or partially purified preparations were used as sources of DRIP and Pol II holoenzyme. A subpopulation of holoenzyme complexes bound to the receptor because BRCA1, which associates with the Pol II holoenzyme, did not associate with the liganded receptor, and only in certain of the holoenzyme- and DRIP-containing fractions did Pol II bind to the liganded receptor. Immunoprecipitation experiments revealed that the DRIP complex was not pre-associated with the Pol II holoenzyme, but the interaction between these two complexes was induced only in the presence of receptor and ligand. These data support a model in which the activation of transcription by hormone-bound receptor requires binding to the DRIP coactivator, and this induced ternary complex can then bind to the Pol II holoenzyme to activate transcription.


Assuntos
RNA Polimerase II/metabolismo , Receptores de Calcitriol/metabolismo , Transativadores/metabolismo , Células HeLa , Humanos , Ligantes , RNA Polimerase II/isolamento & purificação , Transativadores/isolamento & purificação
9.
J Biol Chem ; 274(4): 2113-7, 1999 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-9890972

RESUMO

The breast and ovarian specific tumor suppressor protein, BRCA1, has been shown to be a transcription factor because its carboxyl terminus, when fused to the GAL4 DNA binding domain, activates gene expression in cells. In this study, purified GAL4-BRCA1 protein functions in transcriptional activation assays using a minimal in vitro system. When compared with a standard activator, GAL4-VP16, the levels of activation produced by the BRCA1 fusion protein were stronger when in the presence of certain coactivators. The transcriptional activation by BRCA1 is maximal when in the presence of the PC4 (positive component 4) coactivator but not HMG2 (high mobility group protein 2) and when the template is negatively supercoiled. By contrast, transcriptional activation by VP16 was highest in the presence of HMG2 as well as PC4 and when DNA templates had linear topology. Activation by VP16 was largely unaffected by the concentration of TFIIH, whereas activation by BRCA1 was strongly affected by TFIIH concentrations. The differing cofactor and template requirements suggest that GAL4-BRCA1 and GAL4-VP16 regulate different steps in the pathways that lead to transcriptional activation.


Assuntos
Proteína BRCA1/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Ativação Transcricional , Proteína BRCA1/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Moldes Genéticos , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
10.
Curr Opin Genet Dev ; 8(5): 565-70, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9794828

RESUMO

The RNA polymerase II holoenzyme is the form of polymerase recruited to promoters for protein-coding genes. Several targets of mammalian activators, previously called coactivators, turn out to be subunits of the holoenzyme which activators use to recruit and regulate the holoenzyme. Several of these newly identified holoenzyme components have been implicated in human disease.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Animais , Doença , Holoenzimas/metabolismo , Humanos , Modelos Genéticos , Fatores de Transcrição/metabolismo
11.
J Biol Chem ; 273(43): 27786-93, 1998 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-9774387

RESUMO

A human protein (RUVBL1), consisting of 456 amino acids (50 kDa) and highly homologous to RuvB, was identified by using the 14-kDa subunit of replication protein A (hsRPA3) as bait in a yeast two-hybrid system. RuvB is a bacterial protein involved in genetic recombination that bears structural similarity to subunits of the RF-C clamp loader family of proteins. Fluorescence in situ hybridization analysis demonstrated that the RUVBL1 gene is located at 3q21, a region with frequent rearrangements in different types of leukemia and solid tumors. RUVBL1 co-immunoprecipitated with at least three other unidentified cellular proteins and was detected in the RNA polymerase II holoenzyme complex purified over multiple chromatographic steps. In addition, two yeast homologs, scRUVBL1 and scRUVBL2 with 70 and 42% identity to RUVBL1, respectively, were revealed by screening the complete Saccharomyces cerevisiae genome sequence. Yeast with a null mutation in scRUVBL1 was nonviable. Thus RUVBL1 is an eukaryotic member of the RuvB/clamp loader family of structurally related proteins from bacteria and eukaryotes that is essential for viability of yeast.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases , Genes Fúngicos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Ciclo Celular , Cromossomos Humanos Par 3/genética , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas , Genes Essenciais , Genoma Fúngico , Humanos , Dados de Sequência Molecular , Ligação Proteica , RNA Polimerase II/isolamento & purificação , Proteína de Replicação A , Homologia de Sequência de Aminoácidos
12.
Nat Genet ; 19(3): 254-6, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9662397

RESUMO

The breast cancer specific tumour suppressor protein, BRCA1 (refs 1,2), activates transcription when linked with a DNA-binding domain and is a component of the RNA polymerase II (Pol II) holoenzyme. We show here that RNA helicase A (RHA) protein links BRCA1 to the holoenzyme complex. The region of BRCA1 which interacts with RHA and, thus, the holoenzyme complex, corresponds to subregions of the BRCT domain of BRCA1 (ref. 9). This interaction was shown to occur in yeast nuclei, and expression in human cells of a truncated RHA molecule which retains binding to BRCA1 inhibited transcriptional activation mediated by the BRCA1 carboxy terminus. These data are the first to identify a specific protein interaction with the BRCA1 C-terminal domain and are consistent with the model that BRCA1 functions as a transcriptional coactivator.


Assuntos
Proteína BRCA1/metabolismo , Coenzimas/metabolismo , RNA Nucleotidiltransferases/metabolismo , RNA Polimerase II/metabolismo , Animais , Proteína BRCA1/genética , Células HeLa , Humanos , Mutagênese , RNA Helicases , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
Mol Cell Biol ; 18(5): 2758-67, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9566895

RESUMO

In a two-hybrid screen for proteins that interact with human PCNA, we identified and cloned a human protein (hCdc18) homologous to yeast CDC6/Cdc18 and human Orc1. Unlike yeast, in which the rapid and total destruction of CDC6/Cdc18 protein in S phase is a central feature of DNA replication, the total level of the human protein is unchanged throughout the cell cycle. Epitope-tagged protein is nuclear in G1 and cytoplasmic in S-phase cells, suggesting that DNA replication may be regulated by either the translocation of this protein between the nucleus and the cytoplasm or the selective degradation of the protein in the nucleus. Mutation of the only nuclear localization signal of this protein does not alter its nuclear localization, implying that the protein is translocated to the nucleus through its association with other nuclear proteins. Rapid elimination of the nuclear pool of this protein after the onset of DNA replication and its association with human Orc1 protein and cyclin-cdks supports its identification as human CDC6/Cdc18 protein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Fase S/fisiologia , Sequência de Aminoácidos , Compartimento Celular , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Citoplasma/metabolismo , Replicação do DNA , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem , Ligação Proteica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
14.
Nucleic Acids Res ; 26(3): 847-53, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9443979

RESUMO

The RNA polymerase II (Pol II) holoenzyme in yeast is an essential transcriptional regulatory complex which has been defined by genetic and biochemical approaches. The mammalian counterpart to this complex, however, is less well defined. Experiments herein demonstrate that, along with Pol II and SRB proteins, proteins associated with transcriptional regulation as cofactors are associated with the Pol II holoenzyme. Earlier experiments have demonstrated that the breast cancer-associated tumor suppressor BRCA1 and the CREB binding protein (CBP) were associated with the holoenzyme complex. The protein related to CBP, the E1A-associated p300 protein, is shown in these experiments to be associated with the holoenzyme complex as well as the BRG1 subunit of the chromatin remodeling SWI/SNF complex. Importantly, the Pol II holoenzyme complex does not contain some factors previously reported as stoichiometric components of the holoenzyme complex, most notably the proteins which function in repair of damaged DNA, such as PCNA, RFC and RPA. The presence of the p300 coactivator and the chromatin-modifying BRG1 protein support a role for the Pol II holoenzyme as a key target for regulation by enhancer binding proteins.


Assuntos
Coenzimas/química , Proteínas Nucleares/análise , RNA Polimerase II/química , Transativadores , Fatores de Transcrição/análise , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína de Ligação a CREB , Cromatografia de Afinidade/métodos , DNA/análise , DNA Helicases , Reparo do DNA , Proteína p300 Associada a E1A , Células HeLa , Humanos , Complexo Mediador , Proteínas Nucleares/metabolismo , Mutação Puntual , RNA/análise , RNA Polimerase II/isolamento & purificação , Proteínas Recombinantes de Fusão , Fatores de Transcrição/metabolismo
15.
Cell ; 90(6): 1107-12, 1997 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-9323138

RESUMO

The coactivator CBP has been proposed to stimulate the expression of certain signal-dependent genes via its association with RNA polymerase II complexes. Here we show that complex formation between CBP and RNA polymerase II requires RNA helicase A (RHA), a nuclear DNA/RNA helicase that is related to the Drosophila male dosage compensation factor mle. In transient transfection assays, RHA was found to cooperate with CBP in mediating target gene activation via the CAMP responsive factor CREB. As a mutation in RHA that compromised its helicase activity correspondingly reduced CREB-dependent transcription, we propose that RHA may induce local changes in chromatin structure that promote engagement of the transcriptional apparatus on signal responsive promoters.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , RNA Nucleotidiltransferases/metabolismo , RNA Polimerase II/metabolismo , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , DNA Complementar/metabolismo , Drosophila , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Masculino , Fosfosserina , Testes de Precipitina , Ligação Proteica/fisiologia , RNA Helicases , RNA Polimerase II/análise , Transcrição Gênica/fisiologia , Ativação Transcricional , Dedos de Zinco/fisiologia
16.
Proc Natl Acad Sci U S A ; 94(11): 5605-10, 1997 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-9159119

RESUMO

The familial breast-ovarian tumor suppressor gene product BRCA1 was found to be a component of the RNA polymerase II holoenzyme by several criteria. BRCA1 was found to copurify with the holoenzyme over multiple chromatographic steps. Other tested transcription activators that could potentially contact the holoenzyme were not stably associated with the holoenzyme as determined by copurification. Antibody specific for the holoenzyme component hSRB7 specifically purifies BRCA1. Immunopurification of BRCA1 complexes also specifically purifies transcriptionally active RNA polymerase II and transcription factors TFIIF, TFIIE, and TFIIH. Moreover, a BRCA1 domain, which is deleted in about 90% of clinically relevant mutations, participates in binding to the holoenzyme complex in cells. These data are consistent with recent data identifying transcription activation domains in the BRCA1 protein and link the BRCA1 tumor suppressor protein with the transcription process as a holoenzyme-bound protein.


Assuntos
Proteína BRCA1/química , RNA Polimerase II/química , Proteína BRCA1/biossíntese , Proteína BRCA1/isolamento & purificação , Western Blotting , Cromatografia em Gel , Células HeLa , Humanos , Peso Molecular , RNA Polimerase II/biossíntese , RNA Polimerase II/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Deleção de Sequência , Transativadores/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Transfecção
17.
Genes Dev ; 11(6): 738-47, 1997 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-9087428

RESUMO

We have examined the mechanism by which the cAMP-responsive factor CREB stimulates target gene expression following its phosphorylation at Ser-133. Using an in vitro transcription assay, we found that two signals were required for target gene activation: a phospho(Ser-133)-dependent interaction of CREB with RNA polymerase II via the coactivator CBP and a glutamine-rich domain interaction with TFIID via hTAF(II)130. The adenovirus E1A oncoprotein was found to inhibit phospho(Ser-133) CREB activity by binding to CBP and specifically blocking recruitment of RNA Pol II to the promoter. Our results suggest that the recruitment of CBP-RNA Pol II complexes per se is not sufficient for transcriptional activation and that activator-mediated recruitment of TFIID is additionally required for induction of signal-dependent genes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Sítios de Ligação , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Escherichia coli/genética , Células HeLa , Humanos , Fosforilação , RNA Polimerase II/metabolismo , Transdução de Sinais , Fator de Transcrição TFIID , Fatores de Transcrição TFII/metabolismo , Ativação Transcricional
18.
J Biol Chem ; 271(31): 18405-12, 1996 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-8702484

RESUMO

An activity that modulated the relative levels of transcription from the adenovirus major late promoter (MLP), and the immunoglobulin heavy chain mu promoter (mu) was purified as a 90-kDa factor. This factor is suggested to be a heterotetramer of two subunits: a 20-kDa polypeptide identical to the previously described Dr1/p19 and a novel 30-kDa polypeptide. The Dr1/p19 protein has been characterized as a repressor of transcription, and the 30-kDa protein is related to a recently identified yeast gene proposed to encode a repressor of transcription. The 90-kDa factor forms a complex with TATA-binding protein on DNA and at high concentrations of both factors protects over a 150-base pair region around the promoter from DNase I cleavage. The conformation of this complex as assayed by footprinting analysis is altered by the transcription factor TFIIA on the MLP but not on the mu promoter. Similarly, TFIIA reverses the repression of transcription by the 90-kDa factor on the MLP but not on the mu promoter. Thus, the interactions of TATA-binding protein, TFIIA, and the 90-kDa factor are promoter-specific.


Assuntos
Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , TATA Box , Fator de Transcrição TFIIA , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Virais
19.
Nature ; 380(6569): 82-5, 1996 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-8598913

RESUMO

A large multisubunit complex containing RNA polymerase II, general transcription factors and SRB regulatory proteins initiates transcription of class II genes in yeast cells. The SRB proteins are a hallmark of this RNA polymerase II holoenzyme as they are found only in this complex, where they contribute to the response to regulators. We have now isolated a human homologue of the yeast SRB7 gene and used antibodies against human SRB7 protein to purify and characterize a mammalian RNA polymerase II holoenzyme containing the general transcription factors TFIIE and TFIIH. This holoenzyme is more responsive to transcriptional activators than core RNA polymerase II when assayed in the presence of coactivators.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Cromatografia de Afinidade , DNA Complementar , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Células HeLa , Humanos , Complexo Mediador , Dados de Sequência Molecular , RNA Polimerase II/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIH , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica
20.
Proc Natl Acad Sci U S A ; 92(11): 5174-8, 1995 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-7761469

RESUMO

Phosphorylation of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II has been suggested to be critical for transcription initiation, activation, or elongation. A kinase activity specific for CTD is a component of the general transcription factor TFIIH. Recently, a cyclin-dependent kinase-activator kinase (MO15 and cyclin H) was found to be associated with TFIIH preparations and was suggested to be the CTD kinase. TFIIH preparations containing mutant, kinase-deficient MO15 lack CTD kinase activity, indicating that MO15 is critical for polymerase phosphorylation. Nonetheless, these mutant TFIIH preparations were fully functional (in vitro) in both basal and activated transcription. These results indicate that CTD phosphorylation is not required for transcription with a highly purified system.


Assuntos
Quinases Ciclina-Dependentes , Proteínas Quinases/metabolismo , Fatores de Transcrição TFII , Fatores de Transcrição/metabolismo , Transcrição Gênica , Neoplasias Ósseas , Linhagem Celular , Ciclina H , Ciclinas/isolamento & purificação , Ciclinas/metabolismo , DNA Helicases/metabolismo , Humanos , Mutagênese , Fosforilação , Proteínas Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas Recombinantes/metabolismo , Sarcoma , Fator de Transcrição TFIIH , Fatores de Transcrição/isolamento & purificação , Transfecção , Células Tumorais Cultivadas , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA