Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21419, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049544

RESUMO

In this study, a new multi-layer hybrid nanocomposite membrane named MFI/GO/ZIF-8 has been synthesized. This membrane combines three nanoporous materials with different morphologies in one membrane without using polymer materials. This allows access to a previously accessible region of very high permeability and selectivity properties. In addition to introducing a new and efficient MFI/GO/ZIF-8 membrane in this work, controlling the pore size of the zeolite layer has been investigated to increase the selectivity and permeability of propylene. The membrane was made using a solvent-free hydrothermal method and a layer-by-layer deposition method. To control the pore size of the MFI layer, a two-step synthesis strategy has been implemented. In the first step, three key parameters, including crystallization time, NaOH concentration and aging time of initial suspension, are controlled. In the second step, the effect of three additional parameters including hydrothermal time, hydrothermal temperature and NH4F concentration has been investigated. The results show that the optimal pore size has decreased from 177.8 nm to 120.53 nm (i.e., 32.2%). The MFI/GO/ZIF-8 membrane with fine-tuned crystal size in the zeolite layer was subjected to detailed tests for propylene selectivity and permeability. The structural characteristics of the membrane were also performed using FT-IR, XRD, FESEM and EDS techniques. The results show that the synergistic interaction between the three layers in the nanocomposite membrane significantly improves the selectivity and permeability of propylene. The permeability and selectivity of propylene increased from 50 to 60 GPU and from 136 to 177, respectively, before and after precise crystal size control. MFI/GO/ZIF-8 membrane by controlling the pore size of the zeolite layer shows a significant increase of 23.1% in selectivity and 16.7% in propylene permeability compared to the initial state. Also, due to the precise synthesis method, the absence of solvent and the use of cheap support, the prepared membrane is considered an environmentally friendly and low-cost membrane. This study emphasizes the potential of increasing the selectivity and permeability of propylene in the MFI/GO/ZIF-8 hybrid membrane by controlling the crystal size of the zeolite layer.

2.
Chemosphere ; 283: 131207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34157628

RESUMO

The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.


Assuntos
Hidrogéis , Purificação da Água , Membranas Artificiais , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...