Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470804

RESUMO

The quest for efficient catalysts based on abundant elements that can promote the selective CO2 hydrogenation to green methanol still continues. Most of the reported catalysts are based on Cu/ZnO supported in inorganic oxides, with not much progress with respect to the benchmark Cu/ZnO/Al2O3 catalyst. The use of carbon supports for Cu/ZnO particles is much less explored in spite of the favorable strong metal support interaction that these doped carbons can establish. This manuscript reports the preparation of a series of Cu-ZnO@(N)C samples consisting of Cu/ZnO particles embedded within a N-doped graphitic carbon with a wide range of Cu/Zn atomic ratio. The preparation procedure relies on the transformation of chitosan, a biomass waste, into N-doped graphitic carbon by pyrolysis, which establishes a strong interaction with Cu nanoparticles (NPs) formed simultaneously by Cu2+ salt reduction during the graphitization. Zn2+ ions are subsequently added to the Cu-graphene material by impregnation. All the Cu/ZnO@(N)C samples promote methanol formation in the CO2 hydrogenation at temperatures from 200 to 300 °C, with the temperature increasing CO2 conversion and decreasing methanol selectivity. The best performing Cu-ZnO@(N)C sample achieves at 300 °C a CO2 conversion of 23% and a methanol selectivity of 21% that is among the highest reported, particularly for a carbon-based support. DFT calculations indicate the role of pyridinic N doping atoms stabilizing the Cu/ZnO NPs and supporting the formate pathway as the most likely reaction mechanism.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334548

RESUMO

The primary objective of this research was to develop efficient solid catalysts that can directly convert the lactic acid (LA) obtained from lignocellulosic biomass into alanine (AL) through a reductive amination process. To achieve this, various catalysts based on ruthenium were synthesized using different carriers such as multi-walled carbon nanotubes (MWCNTs), beta-zeolite, and magnetic nanoparticles (MNPs). Among these catalysts, Ru/MNP demonstrated a remarkable yield of 74.0% for alanine at a temperature of 200 °C. This yield was found to be superior not only to the Ru/CNT (55.7%) and Ru/BEA (6.6%) catalysts but also to most of the previously reported catalysts. The characterization of the catalysts and their catalytic results revealed that metallic ruthenium nanoparticles, which were highly dispersed on the external surface of the magnetic carrier, significantly enhanced the catalyst's ability for dehydrogenation. Additionally, the -NH2 basic sites on the catalyst further facilitated the formation of alanine by promoting the adsorption of acidic reactants. Furthermore, the catalyst could be easily separated using an external magnetic field and exhibited the potential for multiple reuses without any significant loss in its catalytic performance. These practical advantages further enhance its appeal for applications in the reductive amination of lactic acid to alanine.

3.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500481

RESUMO

A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts were also synthesized using traditional inorganic alkalis. The mechano-chemical method brings several advantages since the number of steps and the energy involved are smaller than in the co-precipitation method, while the use of organic alkalis eliminates the possibility of contaminating the final solid with alkaline cations. The memory effect was also investigated. XRD studies showed Fe3O4 as stable phase in all solids. Regardless of the alkalis and synthesis methods used, the basicity of catalysts followed the trend: mixed oxides > parent LDH > hydrated LDH. The catalytic activity of the catalysts in the Claisen−Schmidt condensation between benzaldehyde and cyclohexanone showed a linear dependence to the basicity values. After 2 h, the calcined sample cLDH-CO32−/OH−-CP provided a conversion value of 93% with a total selectivity toward 2,6-dibenzylidenecyclohexanone. The presence of these catalysts in the reaction media inhibited the oxidation of benzaldehyde to benzoic acid. Meanwhile, for the self-condensation of cyclohexanone, the conversions to mono- and di-condensed compounds did not exceed 3.8%.


Assuntos
Óxidos , Catálise , Oxirredução
4.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145013

RESUMO

Starting from the reported activity of Co-Fe nanoparticles wrapped onto graphitic carbon (Co-Fe@C) as CO2 hydrogenation catalysts, the present article studies the influence of a series of metallic (Pd, Ce, Ca, Ca, and Ce) and non-metallic (S in various percentages and S and alkali metals) elements as Co-Fe@C promoters. Pd at 0.5 wt % somewhat enhances CO2 conversion and CH4 selectivity, probably due to H2 activation and spillover on Co-Fe. At similar concentrations, Ce does not influence CO2 conversion but does diminish CO selectivity. A 25 wt % Fe excess increases the Fe-Co particle size and has a detrimental effect due to this large particle size. The presence of 25 wt % of Ca increases the CO2 conversion and CH4 selectivity remarkably, the effect being attributable to the CO2 adsorption capacity and basicity of Ca. Sulfur at a concentration of 2.1% or higher acts as a strong poison, decreasing CO2 conversion and shifting selectivity to CO. The combination of S and alkali metals as promoters maintain the CO selectivity of S but notably increase the CO2 conversion. Overall, this study shows how promoters and poisons can alter the catalytic activity of Co/Fe@C catalysts, changing from CH4 to CO. It is expected that further modulation of the activity of Co/Fe@C catalysts can serve to drive the activity and selectivity of these materials to any CO2 hydrogenation products that are wanted.

5.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014511

RESUMO

The deep eutectic solvent (DES)-based biocatalysis of l-menthol acylation was designed for the production of fatty acid l-menthyl ester (FME) using fatty acid methyl ester (FAME). The biocatalytic reaction was assisted by a lipase enzyme in the DES reaction medium. ւՒ-menthol and fatty acids (e.g., CA-caprylic acid; OA-oleic acid; LiA-linoleic acid; and LnA-linolenic acid) were combined in the binary mixture of DES. In this way, the DES provided a nonpolar environment for requested homogeneity of a biocatalytic system with reduced impact on the environment. The screening of lipase enzyme demonstrated better performance of immobilized lipase compared with powdered lipase. The performance of the biocatalytic system was evaluated for different DES compositions (type and concentration of the acid component). l-menthol:CA = 73:27 molar ratio allowed it to reach a maximum conversion of 95% methyl lauric ester (MLE) using a NV (Candida antarctica lipase B immobilized on acrylic resin) lipase biocatalyst. The recyclability of biocatalysts under optimum conditions of the system was also evaluated (more than 80% recovered biocatalytic activity was achieved for the tested biocatalysts after five reaction cycles). DES mixtures were characterized based on differential scanning calorimetry (DSC) and refractive index analysis.


Assuntos
Ésteres , Mentol , Acilação , Biocatálise , Enzimas Imobilizadas/química , Ácidos Graxos , Lipase/química , Mentol/química
6.
iScience ; 25(5): 104252, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521526

RESUMO

A catalyst based on first-row Fe and Co with a record of 51% selectivity to C2-C4 hydrocarbons at 36% CO2 conversion is disclosed. The factors responsible for the C2+ selectivity are a narrow Co-Fe particle size distribution of about 10 nm and embedment in N-doped graphitic matrix. These hydrogenation catalysts convert CO2 into C2-C4 hydrocarbons, including ethane, propane, n-butane, ethylene and propylene together with methane, CO. Selectivity varies depending on the catalyst, CO2 conversion, and the operation conditions. Operating with an H2/CO2 ratio of 4 at 300°C and pressure on 5 bar, a remarkable combined 30% of ethylene and propylene at 34% CO2 conversion was achieved. The present results open the way to develop an economically attractive process for CO2 reduction leading to products of higher added value and longer life cycles with a substantial selectivity.

7.
ACS Appl Mater Interfaces ; 14(8): 10428-10437, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171567

RESUMO

Palladium nanoparticles entrapped in porous aromatic frameworks (PAFs) or covalent organic frameworks may promote heterogeneous catalytic reactions. However, preparing such materials as active nanocatalysts usually requires additional steps for palladium entrapment and reduction. This paper reports as a new approach, a simple procedure leading to the self-entrapment of Pd nanoparticles within the PAF structure. Thus, the selected Sonogashira synthesis affords PAF-entrapped Pd nanoparticles that can catalyze the C-C Suzuki-Miyaura cross-coupling reactions. Following this new concept, PAFs were synthesized via Sonogashira cross-coupling of the tetraiodurated derivative of tetraphenyladamantane or spiro-9,9'-bifluorene with 1,6-diethynylpyrene, then characterized them using powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, X-ray photoelectron spectroscopy, high-resolution scanning transmission electron microscopy, and textural properties (i.e., adsorption-desorption isotherms). The PAF-entrapped Pd nanocatalysts showed high catalytic activity in Suzuki-Miyaura coupling reactions (demonstrated by preserving the turnover frequency values) and stability (demonstrated by palladium leaching and recycling experiments). This new approach presents a new class of PAFs with unique structural, topological, and compositional complexities as entrapped metal nanocatalysts or for other diverse applications.

8.
Chem Rev ; 122(3): 2981-3121, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34874709

RESUMO

Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.


Assuntos
Purificação da Água , Catálise
9.
Inorg Chem ; 60(19): 14820-14830, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515470

RESUMO

A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal-combustion method. The nature of an emerging intermetallic intermediate was revealed unexpectedly for the applied conditions via a single-crystal study of the isolated bimetallic isopropoxide nitrate complex [Ti2Y(iPrO)9(NO3)2], a nonoxo-substituted compound. Powders of the final reaction products were characterized by powder X-ray diffraction, scanning electron microscopy-energy-dispersive spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL). The addition of REEs stabilized the anatase phase up to ca. 700 °C before phase transformation into rutile became evident. The photocatalytic activity of titania modified with Eu3+ and Sm3+ was compared with that of Degussa P25 titania as the control. PL studies indicated the incorporation of Eu and Sm cations into titania (anatase) at lower annealing temperatures (500 °C), but an exclusion to the surface occurred when the annealing temperature was increased to 700 °C. The efficiency of the modified titania was inferior to the control titania while illuminated within narrow wavelength intervals (445-465 and 510-530 nm), but when subjected to a wide range of visible radiation, the Eu3+- and Sm3+-modified titania outperformed the control, which was attributed both to doping of the band structure of TiO2 with additional energy levels and to the surface chemistry of the REE-modified titania.

10.
ACS Appl Mater Interfaces ; 13(31): 36976-36981, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328713

RESUMO

Pyrolysis of chitosan containing various loadings of Co and Fe renders Co-Fe alloy nanoparticles supported on N-doped graphitic carbon. Transmission electron microscopy (TEM) images show that the surface of Co-Fe NPs is partially covered by three or four graphene layers. These Co-Fe@(N)C samples catalyze the Sabatier CO2 hydrogenation, increasing the activity and CH4 selectivity with the reaction temperature in the range of 300-500 °C. Under optimal conditions, a CH4 selectivity of 91% at an 87% CO2 conversion was reached at 500 °C and a space velocity of 75 h-1 under 10 bar. The Co-Fe alloy nanoparticles supported on N-doped graphitic carbon are remarkably stable and behave differently as an analogous Co-Fe catalyst supported on TiO2.

11.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114355

RESUMO

This paper presents an enzyme biocatalytic method for grafting lignin (grafting bioprocess) with aniline, leading to an amino-derivatized polymeric product with modified properties (e.g., conductivity, acidity/basicity, thermostability and amino-functionalization). Peroxidase enzyme was used as a biocatalyst and H2O2 was used as an oxidation reagent, while the oxidative insertion of aniline into the lignin structure followed a radical mechanism specific for the peroxidase enzyme. The grafting bioprocess was tested in different configurations by varying the source of peroxidase, enzyme concentration and type of lignin. Its performance was evaluated in terms of aniline conversion calculated based on UV-vis analysis. The insertion of amine groups was checked by 1H-NMR technique, where NH protons were detected in the range of 5.01-4.99 ppm. The FTIR spectra, collected before and after the grafting bioprocess, gave evidence for the lignin modification. Finally, the abundance of grafted amine groups was correlated with the decrease of the free -OH groups (from 0.030 to 0.009 -OH groups/L for initial and grafted lignin, respectively). Additionally, the grafted lignin was characterized using conductivity measurements, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD-NH3/CO2) and scanning electron microscopy (SEM) analyses. The investigated properties of the developed lignopolymer demonstrated its disposability for specific industrial applications of derivatized lignin.


Assuntos
Compostos de Anilina/química , Lignina/química , Peroxidases/metabolismo , Álcoois/química , Biocatálise , Condutividade Elétrica , Hidrocarbonetos Aromáticos/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Peso Molecular , Oxirredução , Temperatura
12.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105761

RESUMO

Nb(0.05 moles%)-zeolites prepared via a post synthesis methodology (BEA, Y, ZSM-5), or a direct sol-gel method (Silicalite-1) were investigated in the hydroxymethylfurfural (HMF) oxidation by both molecular oxygen, in aqueous phase, and organic peroxides, in acetonitrile. The catalysts prepared through the post synthesis methodology (i.e., Nb-Y5, Nb-ZSM25, Nb-Y30, Nb-BEA12, and Nb-BEA18) displayed a mono-modal mesoporosity and contain residual framework Al-acid sites, extra framework isolated Nb(V)O-H and Nb2O5 pore-encapsulated clusters, while Nb-Sil-1, prepared through a direct synthesis procedure, displayed a bimodal micro-mesoporosity and contains only -Nb=O species. These modified zeolites behave as efficient catalysts in both HMF/glucose wet oxidation to succinic acid (SA) and HMF oxidation with organic peroxides to the 2,5-furandicarboxylic acid (FDCA). The catalytic behavior of these catalysts, in terms of conversion and especially the selectivity, mainly depended on the base/acid sites ratio. Thus, the HMF/glucose wet oxidation occurred with a total conversion and a selectivity to SA of 37.7% (from HMF) or 69.1% (from glucose) on the Nb-Y5 catalyst, i.e., the one with the lowest base/acid sites ratio. On the contrary, the catalysts with the highest base/acid sites ratio, i.e., Nb-ZSM25 and Nb-Sil-1, afforded a high catalytic efficiency in HMF oxidation with organic peroxides, in which FDCA was produced with selectivities of 61.3-63.8% for an HMF conversion of 96.7-99.0%.


Assuntos
Ácidos Dicarboxílicos/síntese química , Furanos/síntese química , Nióbio/química , Óxidos/química , Ácido Succínico/síntese química , Zeolitas/química , Adsorção , Catálise , Furaldeído/análogos & derivados , Furaldeído/química , Glucose/química , Nitrogênio/química , Oxirredução , Oxigênio/química , Peróxidos/química , Porosidade
13.
ACS Omega ; 4(5): 8881-8891, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459976

RESUMO

Technologically relevant tetragonal/cubic phases of HfO2 can be stabilized at room temperature by doping with trivalent rare earths using various approaches denoted generically as bulk coprecipitation. Using in situ/ex situ X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy, and in situ/ex situ site-selective, time-gated luminescence spectroscopy, we show that wet impregnation of hafnia nanoparticles with 10% Eu oxide followed by mild calcination in air at 500 °C produces an efficient stabilization of the cubic phase, comparable to that obtained by bulk precipitation. The physical reasons behind the apparently conflictual data concerning the actual crystallographic phase and the local symmetry around the Eu stabilizer and how these can be mediated by luminescence analysis are also discussed. Apparently, the cubic crystal structure symmetry determined by XRD results in a pseudocubic/tetragonal local structure around Eu determined by luminescence. Considering the recent findings on wet impregnated CeO2 and ZrO2, it is concluded that CeO2, ZrO2, and HfO2 represent a unique case of a family of oxides that is extremely tolerant to heavy doping by wet impregnation. In this way, the same batch of preformed nanoparticles can be doped with different lanthanide concentrations or with various lanthanides at a fixed concentration, allowing a systematic and reliable investigation of the effect of doping, lanthanide type, and lanthanide concentration on the various functionalities of these technologically relevant oxides.

14.
Chem Soc Rev ; 48(8): 2366-2421, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30785143

RESUMO

Heterogeneous catalysis is a promising technology for the valorization of renewable biomass to sustainable advanced fuels and fine chemicals. Porosity and nanostructure are the most versatile features of heterogeneous solid catalysts, which can greatly determine the accessibility of specific active sites, reaction mechanisms, and the selectivity of desirable products. Hence, the precise tuning of porosity and nanostructure has been a potential strategy towards developing novel solid catalysts with indispensable characteristics for efficient biomass valorization. Herein, we present a timely and comprehensive review of the recent advances in catalytic biomass conversions over microporous zeolites, mesoporous silicas, and nanostructured metals/metal oxides. This review covers the catalytic processing of both edible (lipids and starch) and non-edible (lignocellulose) biomass as well as their derived compounds, along with a systematic evaluation of catalyst reusability/kinetic/mechanistic aspects in the relevant processes. The key parameters essential for tailoring particle size, morphology, porosity, acid-base, and redox properties of solid catalysts are emphasized, while discussing the ensuing catalytic effects towards the selective conversion of biomass into desirable chemicals. Special attention has been drawn to understand the role of water in liquid phase biomass conversions as well as the hydrothermal stability and the deactivation of nanoporous catalysts. We believe this comprehensive review will provide new insights towards developing state-of-the-art solid catalysts with well-defined porosity and nanoscale properties for viable biomass conversion.

15.
Nanomaterials (Basel) ; 8(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487442

RESUMO

Here, we show that wet impregnation of ZrO2 nanoparticles with 10% and 20% Eu oxide followed by thermal anneal in air above 500 °C produces full stabilization of the tetragonal phase of ZrO2 without evidencing any phase separation. The bare ZrO2 nanoparticles were obtained using three synthetic methods: oil in water microemulsion, rapid hydrothermal, and citrate complexation methods. The homogeneity of the solid solutions was assessed using X-ray diffraction, Raman spectroscopy, high resolution transmission electron microscopy, and advanced luminescence spectroscopy. Our findings show that wet impregnation, which is a recognized method for obtaining surface doped oxides, can be successfully used for obtaining doped oxides in the bulk with good homogeneity at the atomic scale. The limits of characterization technique in detecting minor phases and the roles of dopant concentration and host structure in formation of phase stabilized solid solutions are also analyzed and discussed.

16.
Chem Soc Rev ; 47(22): 8349-8402, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30226518

RESUMO

Efficient transformation of biomass to value-added chemicals and high-energy density fuels is pivotal for a more sustainable economy and carbon-neutral society. In this framework, developing potential cascade chemical processes using functionalised heterogeneous catalysts is essential because of their versatile roles towards viable biomass valorisation. Advances in materials science and catalysis have provided several innovative strategies for the design of new appealing catalytic materials with well-defined structures and special characteristics. Promising catalytic materials that have paved the way for exciting scientific breakthroughs in biomass upgrading are carbon materials, metal-organic frameworks, solid phase ionic liquids, and magnetic iron oxides. These fascinating catalysts offer unique possibilities to accommodate adequate amounts of acid-base and redox functional species, hence enabling various biomass conversion reactions in a one-pot way. This review therefore aims to provide a comprehensive account of the most significant advances in the development of functionalised heterogeneous catalysts for efficient biomass upgrading. In addition, this review highlights important progress ensued in tailoring the immobilisation of desirable functional groups on particular sites of the above-listed materials, while critically discussing the role of consequent properties on cascade reactions as well as on other vital processes within the bio-refinery. Current challenges and future opportunities towards a rational design of novel functionalised heterogeneous catalysts for sustainable biomass valorisation are also emphasized.

17.
Front Chem ; 6: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29732368

RESUMO

A novel and efficient one-pot system for green production of artificial lignin bio-composites has been developed. Monolignols such as sinapyl (SA) and coniferyl (CA) alcohols were linked together with caffeic acid (CafAc) affording a polymeric network similar with natural lignin. The interaction of the dissolved SA/CA with CafAc already bound on a solid support (SC2/SC6-CafAc) allowed the attachment of the polymeric product direct on the support surface (SC2/SC6-CafAc-L1 and SC2/SC6-CafAc-L2, from CA and SA, respectively). Accordingly, this procedure offers the advantage of a simultaneous polymer production and deposition. Chemically, oxi-copolymerization of phenolic derivatives (SA/CA and CAfAc) was performed with H2O2 as oxidation reagent using peroxidase enzyme (2-1B mutant of versatile peroxidase from Pleurotus eryngii) as catalyst. The system performance reached a maximum of conversion for SA and CA of 71.1 and 49.8%, respectively. The conversion is affected by the system polarity as resulted from the addition of a co-solvent (e.g., MeOH, EtOH, or THF). The chemical structure, morphology, and properties of the bio-composites surface were investigated using different techniques, e.g., FTIR, TPD-NH3, TGA, contact angle, and SEM. Thus, it was demonstrated that the SA monolignol favored bio-composites with a dense polymeric surface, high acidity, and low hydrophobicity, while CA allowed the production of thinner polymeric layers with high hydrophobicity.

18.
Faraday Discuss ; 206: 535-547, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930329

RESUMO

This study reports the behaviour of SCILL based catalysts in the oxidative S-S coupling of aliphatic and aromatic thiols, namely 1-butanethiol and thiophenol, to dibutyl disulfide and diphenyl disulfide. A range of ionic liquids (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) and metal supported catalysts (5% Pt/SiO2; 5% Ru/SiO2; 5% Ru/C; 5% Pt/OMS-2) were used to prepare the SCILL catalysts and all were found to be active for the reaction following the trend 5% Pt-OMS-2 > 5% Pt/SiO2 > 5% Ru/C > 5% Ru/SiO2. The presence of SCILL catalysts afforded high selectivity to the disulfide, and the activity of the SCILL catalyst was dependent on the ionic liquid used. A significant increase in the stability of all the supported metal catalysts was found in the presence of the ionic liquid, and there was no change in the selectivity towards disulfides. This demonstrated that the ionic liquids protect the active sites of the catalyst against sulfation, thus providing more stable and active catalysts.

19.
Molecules ; 22(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240713

RESUMO

The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%)-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V) and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA) which, further, suffers an oxidation process to succinic acid (SA). After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.


Assuntos
Glucose/química , Nióbio/química , Ácido Succínico/síntese química , Zeolitas/química , Sítios de Ligação , Catálise , Oxirredução , Porosidade , Solventes/química , Propriedades de Superfície , Água
20.
Chem Commun (Camb) ; 53(74): 10271-10274, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28862277

RESUMO

Modification of GO by organic molecules changes its catalytic activity in the hydrogen transfer from i-propanol to enones, affecting the selectivity to allyl alcohol and diastereoselectivity to the resulting stereoisomers. It is noteworthy the system does not contain metals and is recyclable.


Assuntos
Grafite/química , Óxidos/química , Prostaglandinas/síntese química , Catálise , Hidrogenação , Estrutura Molecular , Prostaglandinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...