Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 19(9): 1486-1497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34099522

RESUMO

DNA damage, induced by either chemical carcinogens or environmental pollutants, plays an important role in the initiation of colorectal cancer. DNA repair processes, however, are involved in both protecting against cancer formation, and also contributing to cancer development, by ensuring genomic integrity and promoting the efficient DNA repair in tumor cells, respectively. Although DNA repair pathways have been well exploited in the treatment of breast and ovarian cancers, the role of DNA repair processes and their therapeutic efficacy in colorectal cancer is yet to be appreciably explored. To understand the role of DNA repair, especially homologous recombination (HR), in chemical carcinogen-induced colorectal cancer growth, we unraveled the role of RAD51AP1 (RAD51-associated protein 1), a protein involved in HR, in genotoxic carcinogen (azoxymethane, AOM)-induced colorectal cancer. Although AOM treatment alone significantly increased RAD51AP1 expression, the combination of AOM and dextran sulfate sodium (DSS) treatment dramatically increased by several folds. RAD51AP1 expression is found in mouse colonic crypt and proliferating cells. RAD51AP1 expression is significantly increased in majority of human colorectal cancer tissues, including BRAF/KRAS mutant colorectal cancer, and associated with reduced treatment response and poor prognosis. Rad51ap1-deficient mice were protected against AOM/DSS-induced colorectal cancer. These observations were recapitulated in a genetically engineered mouse model of colorectal cancer (ApcMin /+ ). Furthermore, chemotherapy-resistant colorectal cancer is associated with increased RAD51AP1 expression. This phenomenon is associated with reduced cell proliferation and colorectal cancer stem cell (CRCSC) self-renewal. Overall, our studies provide evidence that RAD51AP1 could be a novel diagnostic marker for colorectal cancer and a potential therapeutic target for colorectal cancer prevention and treatment. IMPLICATIONS: This study provides first in vivo evidence that RAD51AP1 plays a critical role in colorectal cancer growth and drug resistance by regulating CRCSC self-renewal.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
2.
Cancer Res ; 80(18): 3855-3866, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32665355

RESUMO

RAD51-associated protein 1 (RAD51AP1) plays an integral role in homologous recombination by activating RAD51 recombinase. Homologous recombination is essential for preserving genome integrity and RAD51AP1 is critical for D-loop formation, a key step in homologous recombination. Although RAD51AP1 is involved in maintaining genomic stability, recent studies have shown that RAD51AP1 expression is significantly upregulated in human cancers. However, the functional role of RAD51AP1 in tumor growth and the underlying molecular mechanism(s) by which RAD51AP1 regulates tumorigenesis have not been fully understood. Here, we use Rad51ap1-knockout mice in genetically engineered mouse models of breast cancer to unravel the role of RAD51AP1 in tumor growth and metastasis. RAD51AP1 gene transcript was increased in both luminal estrogen receptor-positive breast cancer and basal triple-negative breast cancer, which is associated with poor prognosis. Conversely, knockdown of RAD51AP1 (RADP51AP1 KD) in breast cancer cell lines reduced tumor growth. Rad51ap1-deficient mice were protected from oncogene-driven spontaneous mouse mammary tumor growth and associated lung metastasis. In vivo, limiting dilution studies provided evidence that Rad51ap1 plays a critical role in breast cancer stem cell (BCSC) self-renewal. RAD51AP1 KD improved chemotherapy and radiotherapy response by inhibiting BCSC self-renewal and associated pluripotency. Overall, our study provides genetic and biochemical evidences that RAD51AP1 is critical for tumor growth and metastasis by increasing BCSC self-renewal and may serve as a novel target for chemotherapy- and radiotherapy-resistant breast cancer. SIGNIFICANCE: This study provides in vivo evidence that RAD51AP1 plays a critical role in breast cancer growth and metastasis by regulating breast cancer stem cell self-renewal.


Assuntos
Neoplasias da Mama/patologia , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/deficiência , Neoplasias Mamárias Animais/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas , Proteínas de Ligação a RNA/genética , Rad51 Recombinase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...