Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233870

RESUMO

BACKGROUND: Fonio (Digitaria exilis), an orphan millet crop, is the oldest indigenous crop in West Africa. Although the yield is low due to pre-domestication characteristics, the quick maturation time, drought tolerance, and the ability to thrive on poor soils make fonio a climate-smart crop. Being holobionts, plants evolve in close interaction with microbial partners, which is crucial for plant phenology and fitness. As seeds are the bottleneck of vertically transmitting plant microbiota, we proposed to unravel the seed microbiome of the under-domesticated and resilient crop fonio. Our study investigated the bacterial seed endophyte diversity across 126 sequenced fonio accessions from distinct locations in West Africa. We conducted a correlation study of the structures and functions of the seed-associated microbiomes with the native geo-climate and soil structure data. We also performed Genome-wide association studies (GWAS) to identify genetic loci associated with seed endophyte diversity. RESULT: We report that fonio millet has diverse heritable seed endophytic taxa. We analyzed the seed microbiomes of 126 fonio accessions and showed that despite the diversity of microbiomes from distinct geographical locations, all fonio genetic groups share a core microbiome. In addition, we observed that native soil composition, geo-climatic factors, and host genotype correlate with the seed microbiomes. GWAS analysis of genetic loci associated with endophyte seed bacterial diversity identified fonio SNPs associated with genes functioning in embryo development and stress/defense response. CONCLUSION: Analysis of the seed endophyte of the climate-smart crop fonio indicated that despite possessing a heritable core microbiome, native conditions may shape the overall fonio seed microbiomes in different populations. These distinct microbiomes could play important roles in the adaptation of fonio to different environmental conditions. Our study identified the seed microbiome as a potential target for enhancing crop resilience to climate stress in a sustainable way. Video Abstract.


Assuntos
Microbiota , Solo , Solo/química , Estudo de Associação Genômica Ampla , Sementes/genética , Sementes/microbiologia , Microbiota/genética , Plantas , Endófitos , Genótipo , Bactérias/genética
3.
Arch Microbiol ; 205(9): 307, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580455

RESUMO

Isoptericola sp. AK164 is a Gram-positive, aerobic bacterial genus from the family Promicromonosporaceae, isolated from the root rhizosphere of Avicennia marina. AK164 significantly enhanced the growth of the Arabidopsis thaliana plant under normal and saline conditions. These bacteria can produce ACC deaminase and several enzymes playing a role in carbohydrate hydrolyses, such as cellulose, hemicellulose, and chitin degradation, which may contribute to plant growth, salt tolerance, and stress elevation. The genome sequence AK164 has a single circular chromosome of approximately 3.57 Mbp with a GC content of 73.53%. A whole genome sequence comparison of AK164 with type strains from the same genus, using digital DNA-DNA hybridization and average nucleotide identity calculations, revealed that AK164 might potentially belong to a new species of Isoptericola. Genome data and biochemical analyses indicate that AK164 could be a potential biostimulant for improving agriculture in submerged saline land.


Assuntos
Actinomycetales , Avicennia , Avicennia/genética , Avicennia/microbiologia , Rizosfera , Oceano Índico , Actinomycetales/genética , Bactérias/genética , Análise de Sequência , DNA , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ácidos Graxos/química
4.
Crit Rev Biotechnol ; 43(5): 716-733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35723584

RESUMO

Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.


Assuntos
Oryza , Humanos , Sementes , Grão Comestível , Endosperma/genética , Endosperma/metabolismo , Biologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Plant Physiol ; 190(1): 745-761, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674377

RESUMO

Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Proteínas de Ligação a RNA/metabolismo
6.
Plant Mol Biol ; 108(4-5): 443-467, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35098404

RESUMO

KEY MESSAGE: Laser microdissection applied on the developing rice endosperm revealed tissue- and stage-specific regulators modulating programmed cell death and desiccation tolerance mechanisms in the central starchy endosperm following starch metabolism. Rice (Oryza sativa L.) filial seed tissues are heterozygous in its function, which accumulate distinct storage compounds spatially in starchy endosperm and aleurone. In this study, we identified the 18 tissue- and stage-specific gene co-regulons in the developing endosperm by isolating four fine tissues dorsal aleurone layer (AL), central starchy endosperm (CSE), dorsal starchy endosperm (DSE), and lateral starchy endosperm (LSE) at two developmental stages (7 days after flowering, DAF and 12DAF) using laser microdissection (LM) coupled with gene expression analysis of a 44 K microarray. The derived co-expression regulatory networks depict that distinct set of starch biosynthesis genes expressed preferentially at first in CSE at 7 DAF and extend its spatial expression to LSE and DSE by 12 DAF. Interestingly, along with the peak of starch metabolism we noticed accumulation of transcripts related to phospholipid and glycolipid metabolism in CSE during 12 DAF. The spatial distribution of starch accumulation in distinct zones of starchy endosperm contains specific transcriptional factors and hormonal-regulated genes. Genes related to programmed cell death (PCD) were specifically expressed in CSE at 12DAF, when starch accumulation was already completed in that tissue. The aleurone layer present in the outermost endosperm accumulates transcripts of lipid, tricarboxylic acid metabolism, several transporters, while starch metabolism and PCD is not pronounced. These regulatory cascades are likely to play a critical role in determining the positional fate of cells and offer novel insights into the molecular physiological mechanisms of endosperm development from early to middle storage phase.


Assuntos
Endosperma/metabolismo , Oryza/genética , Oryza/metabolismo , Amido/metabolismo , Apoptose , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Lasers , Microdissecção/métodos , Microscopia Confocal , Amido/genética , Transcriptoma
7.
Environ Microbiol ; 24(1): 223-239, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951090

RESUMO

Root endophytes establish beneficial interactions with plants, improving holobiont resilience and fitness, but how plant immunity accommodates beneficial microbes is poorly understood. The multi-stress tolerance-inducing endophyte Enterobacter sp. SA187 triggers a canonical immune response in Arabidopsis only at high bacterial dosage (>108 CFUs ml-1 ), suggesting that SA187 is able to evade or suppress the plant defence system at lower titres. Although SA187 flagellin epitopes are recognized by the FLS2 receptor, SA187-triggered salt tolerance functions independently of the FLS2 system. In contrast, overexpression of the chitin receptor components LYK4 and LYK5 compromised the beneficial effect of SA187 on Arabidopsis, while it was enhanced in lyk4 mutant plants. Transcriptome analysis revealed that the role of LYK4 is intertwined with a function in remodelling defence responses with growth and root developmental processes. LYK4 interferes with modification of plant ethylene homeostasis by Enterobacter SA187 to boost salt stress resistance. Collectively, these results contribute to unlock the crosstalk between components of the plant immune system and beneficial microbes and point to a new role for the Lys-motif receptor LYK4 in beneficial plant-microbe interaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Enterobacter/genética , Imunidade Vegetal , Tolerância ao Sal
8.
Plant Biotechnol J ; 19(7): 1396-1411, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33544455

RESUMO

To address the future food security in Asia, we need to improve the genetic gain of grain yield while ensuring the consumer acceptance. This study aimed to identify novel genes influencing the number of upper secondary rachis branches (USRB) to elevate superior grains without compromising grain quality by studying the genetic variance of 310 diverse O. sativa var. indica panel using single- and multi-locus genome-wide association studies (GWAS), gene set analyses and gene regulatory network analysis. GWAS of USRB identified 230 significant (q-value < 0.05) SNPs from chromosomes 1 and 2. GWAS targets narrowed down using gene set analyses identified large effect association on an important locus LOC_Os02g50790/LOC_Os02g50799 encoding a nuclear-pore anchor protein (OsTPR). The superior haplotype derived from non-synonymous SNPs identified in OsTPR was specifically associated with increase in USRB with superior grains being low chalk. Through haplotype mining, we further demonstrated the synergy of offering added yield advantage due to superior allele of OsTPR in elite materials with low glycaemic index (GI) property. We further validated the importance of OsTPR using recombinant inbred lines (RILs) population by introgressing a superior allele of OsTPR into elite materials resulted in raise in productivity in high amylose background. This confirmed a critical role for OsTPR in influencing yield while maintaining grain and nutritional quality.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Amilose , Ásia , Grão Comestível/genética , Oryza/genética
9.
Plant J ; 106(2): 507-525, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529453

RESUMO

Brown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites. The metabolite genome-wide association study (mGWAS) detected genetic variants influencing diverse metabolic targets in developing and mature seeds. We further interlinked genetic variants on chromosome 7 (6.06-6.43 Mb region) with complex epistatic genetic interactions impacting multi-dimensional nutritional targets, including complex carbohydrate starch quality, the glycemic index, antioxidant catechin, and rice grain color. Through this nutrigenomics approach rare gene bank accessions possessing genetic variants in bHLH and IPT5 genes were identified through haplotype enrichment. These variants were associated with a low glycemic index, higher catechin levels, elevated total flavonoid contents, and heightened antioxidant activity in the whole grain with elevated anti-cancer properties being confirmed in cancer cell lines. This multi-disciplinary nutrigenomics approach thus allowed us to discover the genetic basis of human health-conferring diversity in the metabolome of brown rice.


Assuntos
Valor Nutritivo/genética , Oryza/genética , Antioxidantes/metabolismo , Metabolismo dos Carboidratos/genética , Flavonoides/metabolismo , Genes de Plantas/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Índice Glicêmico/genética , Metaboloma/genética , Oryza/metabolismo , Metabolismo Secundário/genética
10.
Plant Biotechnol J ; 19(5): 910-925, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220119

RESUMO

Rice varieties whose quality is graded as excellent have a lower percent grain chalkiness (PGC) of two per cent and below with higher whole grain yields upon milling, leading to higher economic returns for farmers. We have conducted a genome-wide association study (GWAS) using a combined population panel of indica and japonica rice varieties, and identified a total of 746 single nucleotide polymorphisms (SNPs) that were strongly associated with the chalk phenotype, covered 78 Quantitative Trait Loci (QTL) regions. Among them, 21 were high-value QTLs, as they explained at least 10 % of the phenotypic variance for PGC. A combined epistasis and GWAS was applied to dissect the genetics of the complex chalkiness trait, and its regulatory cascades were validated using gene regulatory networks. Promising novel epistatic interactions were found between the loci of chromosomes 6 (PGC6.1) and 7 (PGC7.8) that contributed to lower PGC. Based on haplotype mining only a few modern rice varieties confounded with a lower chalkiness, and they possess several PGC QTLs. The importance of PGC6.1 was validated through multi-parent advanced generation intercrosses and several low-chalk lines possessing superior haplotypes were identified. The results of this investigation have deciphered the underlying genetic networks that can reduce PGC to 2%, and will thus support future breeding programs to improve the grain quality of elite genetic material with high-yielding potentials.


Assuntos
Oryza , Carbonato de Cálcio , Grão Comestível/genética , Epistasia Genética , Estudo de Associação Genômica Ampla , Oryza/genética , Fenótipo , Melhoramento Vegetal
11.
Plant Biotechnol J ; 18(8): 1763-1777, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945237

RESUMO

Resistant starch (RS) is the portion of starch that escapes gastrointestinal digestion and acts as a substrate for fermentation of probiotic bacteria in the gut. Aside from enhancing gut health, RS contributes to a lower glycemic index. A genome-wide association study coupled with targeted gene association studies was conducted utilizing a diverse panel of 281 resequenced Indica rice lines comprising of ~2.2 million single nucleotide polymorphisms. Low-to-intermediate RS phenotypic variations were identified in the rice diversity panel, resulting in novel associations of RS to several genes associated with amylopectin biosynthesis and degradation. Selected rice lines encoding superior alleles of SSIIa with medium RS and inferior alleles with low RS groups were subjected to detailed transcriptomic, metabolomic, non-starch dietary fibre (DF), starch structural and textural attributes. The gene regulatory networks highlighted the importance of a protein phosphatase alongside multiple genes of starch metabolism. Metabolomics analyses resulted in the identification of several metabolite hubs (carboxylic acid, sugars and polyamines) in the medium RS group. Among DF, mannose and galactose from the water-insoluble fraction were found to be highly associated with low and medium RS lines, respectively. Starch structural analyses revealed that a moderate increase in RS is also linked to an elevation of amylose 1 and amylose 2 fractions. Although rice lines with medium RS content negatively affected textural and viscosity properties in comparison to low RS, the textural property of medium RS lines was in the same acceptable range as IR64, a rice mega variety popular in Asia.


Assuntos
Oryza , Amilopectina , Amilose , Estudo de Associação Genômica Ampla , Oryza/genética , Amido , Viscosidade
12.
Plant Cell Physiol ; 60(3): 626-642, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517758

RESUMO

Heat stress occurrence during seed filling leads to the formation of a chalky portion in the limited zone of the starchy endosperm of rice grains. In this study, isolation of aleurone, dorsal, central and lateral tissues of developing endosperm by laser-microdissection (LM) coupled with gene expression analysis of a 44 K microarray was performed to identify key regulatory genes involved in the formation of milky-white (MW) and white-back (WB) grains during heat stress. Gene regulatory network analysis classified the genes changed under heat stress into five modules. The most distinct expression pattern was observed in modules where most of the small heat shock proteins and cellular organization genes were changed under heat stress in dorsal aleurone cells and dorsal starchy endosperm zones. The histological observation supported the significant increase in cell number and size of dorsal aleurone cells in WB grains. With regard to the central starchy endosperm zone, preferential down-regulation of high molecular weight heat shock proteins (HMW HSPs), including a prominent member encoding endoplasmic reticulum (ER) chaperones, by heat stress was observed, while changes in expression of starch biosynthesis genes were minimal. Characterization of transgenic plants suppressing endosperm lumenal binding protein gene (BiP1), an ER chaperone preferentially down-regulated at the MW zone under heat stress, showed evidence of forming the chalky grains without disturbing the expression of starch biosynthesis genes. The present LM-based comprehensive expression analysis provides novel inferences that HMW HSPs play an important role in controlling redox, nitrogen and amino acid metabolism in endosperm leading to the formation of MW and WB chalky grains under heat stress.


Assuntos
Retículo Endoplasmático/metabolismo , Endosperma/metabolismo , Oryza/fisiologia , Sementes/metabolismo , Retículo Endoplasmático/genética , Endosperma/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Oryza/genética , Sementes/genética
13.
Plant Biotechnol J ; 17(7): 1261-1275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30549178

RESUMO

Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.


Assuntos
Índice Glicêmico , Oryza/química , Oryza/genética , Transcriptoma , Animais , Digestão , Perfilação da Expressão Gênica , Estudos de Associação Genética , Haplótipos , Humanos , Análise da Randomização Mendeliana , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Suínos
14.
Sci Rep ; 7(1): 4632, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680071

RESUMO

Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.


Assuntos
Cicer/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , MicroRNAs/genética , Estresse Fisiológico , Secas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , Estresse Salino , Análise de Sequência de RNA
15.
Sci Rep ; 7(1): 5854, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724910

RESUMO

Rice lines with slower starch digestibility provide opportunities in mitigating the global rise in type II diabetes and related non-communicable diseases. However, screening for low glycemic index (GI) in rice breeding programs is not possible due to time and cost constraints. This study evaluated the feasibility of using in vitro cooked grain amylolysis, starch mobilization patterns during seed germination, and variation in starch structure and composition in the mature seed to differentiate patterns of starch digestibility. Mobilization patterns of total starch, resistant starch, amylose and amylopectin chains, and free sugars during seed germination revealed that the process is analogous to digestion in the human gastrointestinal tract. The combination of these biochemical markers can be used as an alternative measure to predict GI. Additionally, transcriptome analysis of stored mRNA transcripts in high and low GI lines detected differences in starch metabolism and confirmed the importance of seed storage pathways in influencing digestibility. Pathway analyses supported by metabolomics data revealed that resistant starch, cell wall non-starch polysaccharides and flavonoids potentially contribute to slower digestibility. These new insights can guide precision breeding programs to produce low GI rice with acceptable cooking quality to help mitigate the burden of diet-associated lifestyle diseases.


Assuntos
Germinação , Índice Glicêmico , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Amido/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo , Alimentos , Regulação da Expressão Gênica de Plantas , Cinética , Metabolômica , Análise de Componente Principal , Sementes/metabolismo , Transcriptoma/genética
16.
Plant Physiol ; 173(1): 887-906, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881726

RESUMO

A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases.


Assuntos
Amilose/biossíntese , Oryza/genética , Oryza/metabolismo , Amilopectina/genética , Amilopectina/metabolismo , Amilose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Isoflavonas/genética , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Amido/genética
17.
DNA Res ; 24(1): 1-10, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567261

RESUMO

Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea.


Assuntos
Cicer/genética , Genoma de Planta , Solo , Filogenia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único
18.
Sci Rep ; 6: 24638, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27091329

RESUMO

Constant evolutionary pressure acting on pathogens refines their molecular strategies to attain successful pathogenesis. Recent studies have shown that pathogenicity mechanisms of necrotrophic fungi are far more intricate than earlier evaluated. However, only a few studies have explored necrotrophic fungal pathogens. Ascochyta rabiei is a necrotrophic fungus that causes devastating blight disease of chickpea (Cicer arietinum). Here, we report a 34.6 megabase draft genome assembly of A. rabiei. The genome assembly covered more than 99% of the gene space and 4,259 simple sequence repeats were identified in the assembly. A total of 10,596 high confidence protein-coding genes were predicted which includes a large and diverse inventory of secretory proteins, transporters and primary and secondary metabolism enzymes reflecting the necrotrophic lifestyle of A. rabiei. A wide range of genes encoding carbohydrate-active enzymes capable for degradation of complex polysaccharides were also identified. Comprehensive analysis predicted a set of 758 secretory proteins including both classical and non-classical secreted proteins. Several of these predicted secretory proteins showed high cysteine content and numerous tandem repeats. Together, our analyses would broadly expand our knowledge and offer insights into the pathogenesis and necrotrophic lifestyle of fungal phytopathogens.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Anotação de Sequência Molecular , Via Secretória , Virulência/genética
19.
Sci Rep ; 5: 12806, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26259924

RESUMO

Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.


Assuntos
Cicer/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Genótipo , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único
20.
FEBS Lett ; 586(10): 1488-96, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22673515

RESUMO

Galactinol synthase (GolS), a GT8 family glycosyltransferase, synthesizes galactinol and raffinose series of oligosaccharides (RFOs). Identification and analysis of conserved domains in GTs among evolutionarily diverse taxa, structure prediction by homology modeling and determination of substrate binding pocket followed by phylogenetic analysis of GolS sequences establish presence of functional GolS predominantly in higher plants, fungi having the closest possible ancestral sequences. Evolutionary preference for a functional GolS expression in higher plants might have arisen in response to the need for galactinol and RFO synthesis to combat abiotic stress, in contrast to other organisms lacking functional GolS for such functions.


Assuntos
Evolução Biológica , Galactosiltransferases/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Galactosiltransferases/química , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...