Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
2.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202698

RESUMO

Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.


Assuntos
Crassostrea/genética , DNA Satélite , Genoma , Genômica , Animais , Mapeamento Cromossômico , Evolução Molecular , Genômica/métodos , Hibridização in Situ Fluorescente , Padrões de Herança
3.
Genes (Basel) ; 11(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599860

RESUMO

Segments of the genome enriched in repetitive sequences still present a challenge and are omitted in genome assemblies. For that reason, the exact composition of DNA sequences underlying the heterochromatic regions and the active centromeres are still unexplored for many organisms. The centromere is a crucial region of eukaryotic chromosomes responsible for the accurate segregation of genetic material. The typical landmark of centromere chromatin is the rapidly-evolving variant of the histone H3, CenH3, while DNA sequences packed in constitutive heterochromatin are associated with H3K9me3-modified histones. In the Pacific oyster Crassostrea gigas we identified its centromere histone variant, Cg-CenH3, that shows stage-specific distribution in gonadal cells. In order to investigate the DNA composition of genomic regions associated with the two specific chromatin types, we employed chromatin immunoprecipitation followed by high-throughput next-generation sequencing of the Cg-CenH3- and H3K9me3-associated sequences. CenH3-associated sequences were assigned to six groups of repetitive elements, while H3K9me3-associated-ones were assigned only to three. Those associated with CenH3 indicate the lack of uniformity in the chromosomal distribution of sequences building the centromeres, being also in the same time dispersed throughout the genome. The heterochromatin of C. gigas exhibited general paucity and limited chromosomal localization as predicted, with H3K9me3-associated sequences being predominantly constituted of DNA transposons.


Assuntos
Centrômero/genética , Cromatina/genética , Heterocromatina/genética , Ostreidae/genética , Animais , Imunoprecipitação da Cromatina , Elementos de DNA Transponíveis/genética , Genoma/genética , Histonas/genética , Oceano Pacífico
4.
Sci Rep ; 9(1): 19962, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882746

RESUMO

Terminal repeat retrotransposons in miniature (TRIMs) are small non-autonomous LTR retrotransposons consisting of two terminal direct repeats surrounding a short internal domain. The detection and characterization of these elements has been mainly limited to plants. Here we present the first finding of a TRIM element in bivalves, and among the first known in the kingdom Animalia. Class Bivalvia has high ecological and commercial importance in marine ecosystems and aquaculture, and, in recent years, an increasing number of genomic studies has addressed to these organisms. We have identified biv-TRIM in several bivalve species: Donax trunculus, Ruditapes decussatus, R. philippinarum, Venerupis corrugata, Polititapes rhomboides, Venus verrucosa, Dosinia exoleta, Glycymeris glycymeris, Cerastoderma edule, Magallana gigas, Mytilus galloprovincialis. biv-TRIM has several characteristics typical for this group of elements, exhibiting different variations. In addition to canonically structured elements, solo-TDRs and tandem repeats were detected. The presence of this element in the genome of each species is <1%. The phylogenetic analysis showed a complex clustering pattern of biv-TRIM elements, and indicates the involvement of horizontal transfer in the spreading of this element.


Assuntos
Bivalves/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Evolução Biológica , Ecossistema , Evolução Molecular , Genoma , Filogenia
5.
Genes (Basel) ; 9(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360559

RESUMO

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.

6.
Genes (Basel) ; 9(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899300

RESUMO

Due to its extraordinary longevity and wide distribution, the ocean quahog Arctica islandica has become an important species model in both aging and environmental change research. Notwithstanding that, most genetic studies on ocean quahogs have been focused on fishery related, phylogeographic and phylogenetic aspects but nothing is known about their chromosomes. In this work, the chromosomes of the ocean quahog Arctica islandica were analysed by means of 4′,6-diamidino-2-phenylindole (DAPI)/propidium iodide (PI) staining and fluorescent in situ hybridization (FISH) with rDNA, histone gene and telomeric probes. Whilst both 5S rDNA and 45S rDNA were clustered at single subcentromeric locations on the long arms of chromosome pairs 2 and 12, respectively, histone gene clusters located on the short arms of chromosome pairs 7, 10 and 17. As happens with most bivalves, the location of the vertebrate type telomeric sequence clusters was restricted to chromosome ends. The knowledge of the karyotype can facilitate the anchoring of genomic sequences to specific chromosome pairs in this species.

7.
Genes (Basel) ; 8(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215567

RESUMO

Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10-11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA), 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells.

8.
Sci Rep ; 7(1): 6930, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761142

RESUMO

Tandemly repeated DNAs usually constitute significant portions of eukaryotic genomes. In bivalves, however, repetitive DNAs are habitually not widespread. In our search for abundant repetitive DNAs in trough shells, we discovered a novel satellite DNA, SSUsat, which constitutes at least 1.3% of the genome of Spisula subtruncata. As foreseen by the satellite DNA library hypothesis, we confirmed that this satellite DNA is also present in two other Mactridae species, showing a highly conserved nucleotide sequence together with a dramatic diminution in the number of repeats. Predominantly located at the G + C-rich intercalary heterochromatin of S. subtruncata, SSUsat displays several DNA methylation peculiarities. The level of methylation of SSUsat is high (3.38%) in comparison with bivalve standards and triplicates the mean of the S. subtruncata genome (1.13%). Methylation affects not only the cytosines in CpG dinucleotides but also those in CHH and CHG trinucleotides, a feature common in plants but scarce and without any clear known relevance in animals. SSUsat segments enriched in methylated cytosines partly overlap those showing higher sequence conservation. The presence of a chromosome pair showing an accumulation of markedly under-methylated SSUsat monomers additionally indicates that the methylation processes that shape repetitive genome compartments are quite complex.


Assuntos
Metilação de DNA , DNA Satélite/genética , Spisula/genética , Animais , Composição de Bases , Mapeamento Cromossômico , Heterocromatina/genética , Análise de Sequência de DNA
9.
BMC Genet ; 18(1): 66, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28709395

RESUMO

BACKGROUND: Although Tellinidae is one of the largest and most diverse families of bivalves, its taxonomy is utterly chaotic. This is mainly due to the morphological diversity and homoplasy displayed by their shells and to the scarcity of the molecular phylogenetic studies performed on them. A molecular cytogenetic analysis of four tellin shell species, Bosemprella incarnata, Macomangulus tenuis, Moerella donacina and Serratina serrata, was performed. To molecularly characterize the analyzed specimens, the sequence of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) was also studied. RESULTS: The karyotypes of the four species were composed of different amounts of bi-armed and telocentric chromosomes. The chromosomal mapping of 45S and 5S rDNA and H3 histone gene clusters by fluorescent in situ hybridization also revealed conspicuous differences on the distribution of these DNA sequences on their karyotypes. Vertebrate type telomeric sequences were located solely on both ends of each chromosome in all four tellin shells. CONCLUSION: We present clear evidence of the valuable information provided by FISH signals in both analyzing chromosome evolution in Tellinidae and as a further tool in identifying tellin shell specimens for molecular phylogenies.


Assuntos
Exoesqueleto/química , Bivalves/genética , Cariotipagem/métodos , Exoesqueleto/anatomia & histologia , Animais , Bivalves/anatomia & histologia , Bivalves/classificação , Mapeamento Cromossômico , Histonas/genética , Hibridização in Situ Fluorescente/métodos , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
10.
Biomed Res Int ; 2017: 7638790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555195

RESUMO

The striped venus clams Chamelea gallina and C. striatula are commercially important bivalves inhabiting European and North African coastal waters. The taxonomic status of these taxa has been the subject of debate for decades. In order to elucidate this issue, we generated 5S and 28S ribosomal RNA and H3 histone gene probes and mapped them by fluorescent in situ hybridization to the chromosomes of morphologically identified striped venus clams, collected from four geographically distant Atlantic and Mediterranean populations. The nucleotide variation at the three DNA markers, that is, the nuclear internal transcribed spacer 2 (ITS2), the mitochondrial cytochrome c oxidase subunit I (COI), and the large ribosomal subunit rRNA (16S) fragments, was also studied and the resultant phylogenetic trees were evaluated. Striking differences in both the chromosome distribution of these genes and the clustering of the samples on the phylogenetic trees observed provide clear evidence that C. gallina and C. striatula are separated species.


Assuntos
Bivalves/classificação , Bivalves/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Histonas/genética , RNA Ribossômico/genética , Animais
11.
Genes (Basel) ; 7(8)2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27537915

RESUMO

The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. In this work, we analyzed the chromosomes of Spisula solida, Spisula subtruncata and Mactra stultorum by means of fluorochrome staining, C-banding and fluorescent in situ hybridization using 28S ribosomal DNA (rDNA), 5S rDNA, H3 histone gene and telomeric probes. All three trough shells presented 2n = 38 chromosomes but different karyotype compositions. As happens in most bivalves, GC-rich regions were limited to the nucleolus organizing regions in Spisula solida. In contrast, many GC-rich heterochromatic bands were detected in both Spisula subtruncata and Mactra stultorum. Although the three trough shells presented single 5S rDNA and H3 histone gene clusters, their chromosomal locations differed. Regarding major rDNA clusters, while Spisula subtruncata presented a single cluster, both Spisula solida and Mactra stultorum showed two. No evidence of intercalary telomeric signals was detected in these species. The molecular cytogenetic characterization of these taxa will contribute to understanding the role played by chromosome changes in the evolution of trough shells.

12.
Cytogenet Genome Res ; 147(2-3): 195-207, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26680763

RESUMO

Digenetic trematodes are the largest group of internal metazoan parasites, but their chromosomes are poorly studied. Although chromosome numbers and/or karyotypes are known for about 300 of the 18,000 described species, molecular cytogenetic knowledge is mostly limited to the mapping of telomeric sequences and/or of major rDNA clusters in 9 species. In this work we mapped major and 5S rDNA clusters and telomeric sequences in chromosomes of Bucephalus minimus, B. australis, Prosorhynchoides carvajali (Bucephaloidea), Monascus filiformis (Gymnophalloidea), Parorchis acanthus (Echinostomatoidea), Cryptocotyle lingua (Opisthorchioidea), Cercaria longicaudata, Monorchis parvus (Monorchioidea), Diphterostomum brusinae, and Bacciger bacciger (Microphalloidea). Whilst single major and minor rDNA clusters were mapped to different chromosome pairs in B. minimus and P. acanthus, overlapping signals were detected on a single chromosome pair in the remaining taxa. FISH experiments using major rDNA and telomeric probes clearly demonstrated the presence of highly stretched NORs in most of the digenean taxa analyzed. B chromosomes were detected in the B. bacciger samples hosted by Ruditapes decussatus. Although the cercariae specimens obtained from Donax trunculus, Tellina tenuis, and R. decussatus were in agreement with B. bacciger, their karyotypes showed striking morphological differences in agreement with the proposed assignation of these cercariae to different species of the genus Bacciger. Results are discussed in comparison with previous data on digenean chromosomes.


Assuntos
Análise Citogenética/métodos , Parasitos/genética , RNA de Helmintos/genética , RNA Ribossômico 5S/genética , Trematódeos/genética , Animais , Mapeamento Cromossômico/métodos , Cromossomos/genética , DNA de Helmintos/genética , DNA Ribossômico/genética , Variação Genética , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , Parasitos/classificação , Especificidade da Espécie , Telômero/genética , Trematódeos/classificação
13.
Mol Cytogenet ; 8: 40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106449

RESUMO

BACKGROUND: Histone H3 gene clusters have been described as highly conserved chromosomal markers in invertebrates. Surprisingly, in bivalves remarkable interspecific differences were found among the eight mussels and between the two clams in which histone H3 gene clusters have already been located. Although the family Veneridae comprises 10 % of the species of marine bivalves, their chromosomes are poorly studied. The clams belonging to this family present 2n = 38 chromosomes and similar karyotypes showing chromosome pairs gradually decreasing in length. In order to assess the evolutionary behavior of histone and rRNA multigene families in bivalves, we mapped histone H3 and ribosomal RNA probes to chromosomes of ten species of venerid clams. RESULTS: In contrast with the reported conservation of histone H3 gene clusters and their intercalary location in invertebrates, these loci varied in number and were mostly subterminal in venerid clams. On the other hand, while a single 45S rDNA cluster, highly variable in location, was found in these organisms, 5S rDNA clusters showed interspecific differences in both number and location. The distribution patterns of these sequences were species-specific and mapped to different chromosomal positions in all clams but Ruditapes decussatus, in which one of the minor rDNA clusters and the major rDNA cluster co-located. CONCLUSION: The diversity in the distribution patterns of histone H3 gene, 5S rDNA and 28S rDNA clusters found in venerid clams, together with their different evolutionary behaviors in other invertebrate taxa, strongly suggest that the control of the spreading of these multigene families in a group of organisms relies upon a combination of evolutionary forces that operate differently depending not only on the specific multigene family but also on the particular taxa. Our data also showed that H3 histone gene and rDNA clusters are useful landmarks to integrate nex-generation sequencing (NGS) and evolutionary genomic data in non-model species.

14.
Genetica ; 142(6): 545-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25432678

RESUMO

This work explores both the chromatin loss and the differential genome methylation in the sea lamprey (Petromyzon marinus) from a molecular cytogenetic point of view. Fluorescent in situ hybridization experiments on meiotic bivalents and mitotic chromosomes corroborate the chromatin loss previously observed during the development of the sea lamprey and demonstrate that the elimination affects not only to Germ1 sequences but also to the rpt200 satellite DNA and most part of the major ribosomal DNA present on the germinal line. 5-Methylcytosine immunolocation revealed that the GC-rich heterochromatin is highly methylated in the germ line but significantly less in somatic chromosomes. These findings not only support previous observations about genome rearrangements but also give new information about epigenetic changes in P. marinus. The key position of lampreys in the vertebrate phylogenetic tree makes them an interesting taxon to provide relevant information about genome evolution in vertebrates.


Assuntos
Cromatina/genética , Metilação de DNA , Epigênese Genética , Rearranjo Gênico , Petromyzon/genética , Animais , Bandeamento Cromossômico , Cromossomos , DNA Satélite , Células Germinativas , Heterocromatina/genética , Hibridização in Situ Fluorescente , Análise de Sequência de DNA
15.
BMC Genet ; 15: 84, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25023072

RESUMO

BACKGROUND: Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). RESULTS: Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. CONCLUSION: The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae.


Assuntos
Mapeamento Cromossômico , Histonas/genética , Cariótipo , Família Multigênica , Mytilus/genética , RNA Ribossômico 5S/genética , Animais
16.
Biomed Res Int ; 2014: 754012, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967400

RESUMO

The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae.


Assuntos
Bivalves/genética , Cromossomos/genética , DNA Ribossômico/genética , Evolução Molecular , Filogenia , RNA Ribossômico 5S/genética , Animais , Especificidade da Espécie
17.
Genome ; 54(9): 771-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21905767

RESUMO

The chromosomes of the invasive black-pigmy mussel (Xenostrobus securis (Lmk. 1819)) were analyzed by means of 4',6-diamidino-2-phenylindole (DAPI) / propidium iodide (PI) and chromomycin A3 (CMA) / DAPI fluorescence staining and fluorescent in situ hybridization using major rDNA, 5S rDNA, core histone genes, linker histone genes, and telomeric sequences as probes. The diploid chromosome number in this species is 2n = 30. The karyotype is composed of seven metacentric, one meta/submetacentric, and seven submetacentric chromosome pairs. Telomeric sequences appear at both ends of every single chromosome. Major rDNA clusters appear near the centromeres on chromosome pairs 1 and 3 and are associated with bright CMA fluorescence and dull DAPI fluorescence. This species shows five 5S rDNA clusters close to the centromeres on four chromosome pairs (2, 5, 6, and 8). Three of the four core histone gene clusters map to centromeric positions on chromosome pairs 7, 10, and 13. The fourth core histone gene cluster occupies a terminal position on chromosome pair 8, also bearing a 5S rDNA cluster. The two linker histone gene clusters are close to the centromeres on chromosome pairs 12 and 14. Therefore, the use of these probes allows the unequivocal identification of 11 of the 15 chromosome pairs that compose the karyotype of X. securis.


Assuntos
Bivalves/genética , DNA Ribossômico/genética , Histonas/genética , RNA Ribossômico 5S/genética , Animais , Mapeamento Cromossômico , Análise Citogenética , Hibridização in Situ Fluorescente , Cariótipo , Família Multigênica/genética
18.
Genetica ; 139(6): 823-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21670988

RESUMO

We describe the chromosomal location of GC-rich regions, 28S and 5S rDNA, core histone genes, and telomeric sequences in the veneroid bivalve species Venerupis aurea and Tapes (Venerupis) rhomboides, using fluorochrome staining with propidium iodide, DAPI and chromomycin A3 (CMA) and fluorescent in situ hybridization (FISH). DAPI dull/CMA bright bands were coincident with the chromosomal location of 28S rDNA in both species. The major rDNA was interstitially clustered at a single locus on the short arms of the metacentric chromosome pair 5 in V. aurea, whereas in T. rhomboides it was subtelomerically clustered on the long arms of the subtelocentric chromosome pair 17. 5S rDNA also was a single subtelomeric cluster on the long arms of subtelocentric pair 17 in V. aurea and on the short arms of the metacentric pair 9 in T. rhomboides. Furthermore, V. aurea showed four telomeric histone gene clusters on three metacentric pairs, at both ends of chromosome 2 and on the long arms of chromosomes 3 and 8, whereas histone genes in T. rhomboides clustered interstitially on the long arms of the metacentric pair 5 and proximally on the long arms of the subtelocentric pair 12. Double and triple FISH experiments demonstrated that rDNA and H3 histone genes localized on different chromosome pairs in the two clam species. Telomeric signals were found at both ends of every single chromosome in both species. Chromosomal location of these three gene families in two species of Veneridae provides a clue to karyotype evolution in this commercially important bivalve family.


Assuntos
Bivalves/genética , Análise Citogenética , DNA Ribossômico/genética , Histonas/genética , Telômero/genética , Animais , Composição de Bases/genética , Mapeamento Cromossômico , Feminino , Masculino
19.
PLoS One ; 6(12): e29311, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216243

RESUMO

BACKGROUND: We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. CONCLUSION/SIGNIFICANCE: High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans-species that are not subject to sperm competition-showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved.


Assuntos
Hominidae/genética , Pan troglodytes/genética , Cromossomo Y , Animais , Hibridização in Situ Fluorescente , Pan troglodytes/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie
20.
BMC Genet ; 11: 109, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21143946

RESUMO

BACKGROUND: Chromosome rearrangements are an important part of the speciation process in many taxa. The study of chromosome evolution in bivalves is hampered by the absence of clear chromosomal banding patterns and the similarity in both chromosome size and morphology. For this reason, obtaining good chromosome markers is essential for reliable karyotypic comparisons. To begin this task, the chromosomes of the mussels Brachidontes puniceus and B. rodriguezi were studied by means of fluorochrome staining and fluorescent in situ hybridization (FISH). RESULTS: Brachidontes puniceus and B. rodriguezi both have 2n = 32 chromosomes but differing karyotype composition. Vertebrate-type telomeric sequences appear at both ends of every single chromosome. B. puniceus presents a single terminal major rRNA gene cluster on a chromosome pair while B. rodriguezi shows two. Both mussels present two 5S rDNA and two core histone gene clusters intercalary located on the long arms of two chromosome pairs. Double and triple-FISH experiments demonstrated that one of the 5S rDNA and one of the major rDNA clusters appear on the same chromosome pair in B. rodriguezi but not in B. puniceus. On the other hand, the second 5S rDNA cluster is located in one of the chromosome pairs also bearing one of the core histone gene clusters in the two mussel species. CONCLUSION: Knowledge of the chromosomal distribution of these sequences in the two species of Brachidontes is a first step in the understanding of the role of chromosome changes on bivalve evolution.


Assuntos
Mapeamento Cromossômico , Genes de RNAr , Histonas/genética , Mytilidae/genética , Telômero/genética , Animais , DNA Ribossômico/genética , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Família Multigênica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...