Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2019: 7627148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065279

RESUMO

Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.

2.
BMC Neurosci ; 19(1): 47, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075755

RESUMO

BACKGROUND: The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABAC-ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABAC-ρ1R. RESULTS: In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABAC-ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. "In silico" modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols. CONCLUSIONS: The sulfur-containing compounds structurally related to taurine are partial agonists of GABAC-ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.


Assuntos
Receptores de GABA/efeitos dos fármacos , Compostos de Enxofre/farmacologia , Taurina/análogos & derivados , Taurina/efeitos dos fármacos , Animais , Técnicas de Patch-Clamp/métodos , Taurina/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo
3.
J Neurophysiol ; 120(3): 973-984, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790838

RESUMO

Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.


Assuntos
Cálcio/metabolismo , Tamanho Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Ácido Glutâmico/metabolismo , Taurina/metabolismo , Análise de Variância , Ânions/metabolismo , Antiulcerosos/farmacologia , Carbenoxolona/farmacologia , Ciclopentanos/farmacologia , Humanos , Indanos/farmacologia , Canais Iônicos/antagonistas & inibidores , Microscopia de Vídeo , Osmorregulação/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Retina/fisiologia
4.
Adv Neurobiol ; 16: 33-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828605

RESUMO

Taurine content is high (mM) in mammalian brain. By its major role as an osmolyte, taurine contributes to the cell volume control, which is particularly critical in the brain. Taurine participates in osmotic adjustments required to maintain the organization and size of intracellular compartments. It counteracts volume fluctuations in unbalanced transmembrane fluxes of ions and neurotransmitters, preserving the functional synaptic contacts. Taurine has a key role in the long-term adaptation to chronic hyponatremia as well as in other pathologies leading to brain edema. Together with other osmolytes, taurine corrects cell shrinkage, preventing mysfunction of organelles and apoptosis. Swelling corrective taurine efflux occurs through a leak pathway, likely formed by LCRR8 protein isoforms. Shrinkage-activated influx comes largely by the increased activity of the Na+/Cl--dependent transporter. The brain taurine pool results from the equilibrium between (i) dietary intake and active transport into the cell, (ii) synthesis in the brain itself or import of that synthesized elsewhere, and (iii) leak and posterior excretion. The interplay between these elements preserves brain taurine homeostasis in physiological conditions and permits the proper adjustments upon deviations of normal in the internal/external environment.


Assuntos
Encéfalo/metabolismo , Tamanho Celular , Homeostase/fisiologia , Taurina/metabolismo , Animais , Humanos , Concentração Osmolar
5.
Neurochem Res ; 42(2): 415-427, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27804011

RESUMO

Neural progenitors (NP), found in fetal and adult brain, differentiate into neurons potentially able to be used in cell replacement therapies. This approach however, raises technical and ethical problems which limit their potential therapeutic use. Alternately, NPs can be obtained by transdifferentiation of non-neural somatic cells evading these difficulties. Human bone marrow mesenchymal stromal cells (MSCs) are suggested to transdifferentiate into NP-like cells, which however, have a low proliferation capacity. The present study demonstrates the requisite of cell adhesion for proliferation and survival of NP-like cells and re-evaluates some neuronal features after differentiation by standard procedures. Mature neuronal markers, though, were not detected by these procedures. A chemical differentiation approach was used in this study to convert MSCs-derived NP-like cells into neurons by using a cocktail of six molecules, CHIR99021, I-BET151, RepSox, DbcAMP, forskolin and Y-27632, defined after screening combinations of 22 small molecules. Direct transdifferentiation of MSCs into neuronal cells was obtained with the small molecule cocktail, without requiring the NP-like intermediate stage.


Assuntos
Proliferação de Células/fisiologia , Transdiferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Amidas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/administração & dosagem , Combinação de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piridinas/administração & dosagem , Adulto Jovem
6.
Mol Pharmacol ; 90(3): 358-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27358231

RESUMO

Volume changes deviating from original cell volume represent a major challenge for cellular homeostasis. Cell volume may be altered either by variations in the external osmolarity or by disturbances in the transmembrane ion gradients that generate an osmotic imbalance. Cells respond to anisotonicity-induced volume changes by active regulatory mechanisms that modify the intracellular/extracellular concentrations of K(+), Cl(-), Na(+), and organic osmolytes in the direction necessary to reestablish the osmotic equilibrium. Corrective osmolyte fluxes permeate across channels that have a relevant role in cell volume regulation. Channels also participate as causal actors in necrotic swelling and apoptotic volume decrease. This is an overview of the types of channels involved in either corrective or pathologic changes in cell volume. The review also underlines the contribution of transient receptor potential (TRP) channels, notably TRPV4, in volume regulation after swelling and describes the role of other TRPs in volume changes linked to apoptosis and necrosis. Lastly we discuss findings showing that multimers derived from LRRC8A (leucine-rich repeat containing 8A) gene are structural components of the volume-regulated Cl(-) channel (VRAC), and we underline the intriguing possibility that different heteromer combinations comprise channels with different intrinsic properties that allow permeation of the heterogenous group of molecules acting as organic osmolytes.


Assuntos
Tamanho Celular , Canais Iônicos/metabolismo , Animais , Morte Celular , Sobrevivência Celular , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica
8.
Stem Cell Res ; 12(3): 690-702, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681519

RESUMO

Taurine was previously reported to increase the proliferation of neural precursor cells (NPCs) from subventricular zone of the mouse brain. The results of a study that aimed to understand the mechanisms of this effect are presented here. Because taurine was not found in NPC nuclei, direct interactions with nuclear elements seem unlikely. A gene expression profile analysis indicated that genes that are regulated by taurine have roles in i) proliferation, including the Shh and Wnt pathways; ii) cellular adhesion; iii) cell survival; and iv) mitochondrial functioning. Cell cycle analysis of propidium iodide and CFSE-labeled cells using flow cytometry revealed an increase in the number of cells in the S-phase and a decrease in those in the G0/G1 phase in taurine-treated cultures. No changes in the length of the cell cycle were observed. Quantification of the viable, apoptotic, and necrotic cells in cultures using flow cytometry and calcein-AM, annexin-V, and propidium iodide staining showed reductions in the number of apoptotic and necrotic cells (18% to 11% and 13% to 10%, respectively) and increases in the number of viable cells (61% to 69%) in the taurine-treated cultures. Examination of the relative mitochondrial potential values by flow cytometry and rhodamine123 or JC-1 staining showed a 44% increase in the number of cells with higher mitochondrial potential and a 38% increase in the mitochondrial membrane potential in taurine cultures compared with those of controls. Taken together, the results suggest that taurine provides more favorable conditions for cell proliferation by improving mitochondrial functioning.


Assuntos
Proliferação de Células , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Taurina/metabolismo , Animais , Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo
9.
Cell Physiol Biochem ; 34(6): 2038-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25562152

RESUMO

BACKGROUND/AIMS: Neural stem/ progenitor cells (NPCs) endure important changes in cell volume during growth, proliferation and migration. As a first approach to know about NPC response to cell volume changes, the Regulatory Volume Decrease (RVD) subsequent to hypotonic swelling was investigated. METHODS: NPCs obtained from the mesencephalon and the subventricular zone of embryonic and adult mice, respectively, were grown and cultured as neurospheres. Cell volume changes were measured by large-angle light-scattering and taurine efflux by [(3)H]-taurine. Expression of genes encoding molecules related to RVD was analysed using a DNA microarray obtained from NPC samples. RESULTS: Embryonic and adult NPCs exposed to osmolarity reduction (H15, H30, H40) exhibited rapid swelling followed by RVD. The magnitude, efficiency and pharmacological profile, of RVD and of [(3)H]-taurine osmosensitive efflux were comparable to those found in cultured brain cells, astrocytes and neurons. The relative expression of genes encoding molecules related to volume regulation, i.e. K(+) and Cl(-) channels, cotransporters, exchangers and aquaporins were identified in NPCs. CONCLUSION: NPCs show the ability to respond to hypotonic-evoked volume changes by adaptative recovery processes, similar to those found in other cultured brain cells. Genes related to molecules involved in RVD were found expressed in NPCs.


Assuntos
Proliferação de Células/fisiologia , Tamanho Celular , Análise em Microsséries , Células-Tronco Neurais/citologia , Animais , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mesencéfalo/citologia , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Pressão Osmótica , Taurina/química
10.
Am J Physiol Renal Physiol ; 305(10): F1402-11, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089410

RESUMO

K(+)-Cl(-) cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K(+) diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K(+) diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct.


Assuntos
Rim/metabolismo , Simportadores/metabolismo , Acidose/induzido quimicamente , Acidose/metabolismo , Cloreto de Amônio , Animais , Transporte Biológico , Glicemia/metabolismo , Dieta Hipossódica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio na Dieta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/metabolismo , Estreptozocina , Simportadores/genética
11.
J Biol Chem ; 288(44): 31468-76, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043619

RESUMO

The K(+):Cl(-) cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity.


Assuntos
Pressão Osmótica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Oócitos/citologia , Oócitos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Serina/genética , Serina/metabolismo , Simportadores/genética , Xenopus laevis
12.
Dev Neurosci ; 35(1): 40-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23466467

RESUMO

Taurine is present at high concentrations in the fetal brain and is required for optimal brain development. Recent studies have reported that taurine causes increased proliferation of neural stem/progenitor neural cells (neural precursor cells, NPCs) obtained from embryonic and adult rodent brain. The present study is the first to show that taurine markedly increases cell numbers in cultures and neuronal generation from human NPCs (hNPCs). hNPCs obtained from 3 fetal brains (14-15 weeks of gestation) were cultured and expanded as neurospheres, which contained 76.3% nestin-positive cells. Taurine (5-20 mM) increased the number of hNPCs in culture, with maximal effect found at 10 mM and 4 days of culture. The taurine-induced increase ranged from 57 to 188% in the 3 brains examined. Taurine significantly enhanced the percentage of neurons formed from hNPCs under differentiating conditions, with increases ranging from 172 to 480% over controls without taurine. Taurine also increased the cell number and neuronal generation in cultures of the immortalized human cell line ReNcell VM. These results suggest that taurine has a positive influence on hNPC growth and neuronal formation.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/citologia , Neurogênese , Taurina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feto , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia
13.
Pflugers Arch ; 464(3): 317-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22864523

RESUMO

The involvement of WNK3 (with no lysine [K] kinase) in cell volume regulation evoked by anisotonic conditions was investigated in two modified stable lines of HEK293 cells: WNK3+, overexpressing WNK3 and WNK3-KD expressing a kinase inactive by a punctual mutation (D294A) at the catalytic site. This different WNK3 functional expression modified intracellular Cl(-) concentration with the following profile: WNK3+ > control > WNK3-KD cells. Stimulated with 15% hypotonic solutions, WNK3+ cells showed less efficient RVD (13.1%), lower Cl(-) efflux and decreased (94.5%) KCC activity. WNK3-KD cells showed 30.1% more efficient RVD, larger Cl(-) efflux and 5-fold higher KCC activity, increased since the isotonic condition. Volume-sensitive Cl(-) currents were similar in controls, WNK3+ cells, and WNK3-KD cells. Taurine efflux was not evoked at H15%. These results show a WNK3 influence on RVD in HEK293 cells via increasing KCC activity. Hypertonic medium induced cell shrinkage and RVI. In both WNK3+ and WNK3-KD cells, RVI and NKCC activity were increased, in WNK3+ cells presumably by enhanced NKCC phosphorylation, and in WNK3-KD cells via the [Cl(-)](i) reduction induced by the higher KCC activity in characteristic of these cells. These results support the role of WNK3 in modulation of intracellular Cl(-) concentration, in RVD, and indirectly on RVI, via its effects on KCC and NKCC activity. WNK3 in HEK293 cells is expressed as puncta at the intercellular junctions and diffusely at the cytosol, while the inactive kinase was found concentrated at the Golgi area. Cells with inactive WNK3 exhibited a marked change of cell phenotype.


Assuntos
Tamanho Celular , Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Mutação , Concentração Osmolar , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/metabolismo , Taurina/metabolismo , Cotransportadores de K e Cl-
14.
Neurochem Res ; 37(11): 2379-87, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22544664

RESUMO

Brain edema is a severe clinical complication in a number of pathologies and is a major cause of increased morbidity and death. The swelling of astrocytes caused by a disruption of water and ion homeostasis, is the primary event contributing to the cytotoxic form of brain edema. Astrocyte cytotoxic swelling ultimately leads to transcapillary fluxes of ions and water into the brain parenchyma. This review focuses on the implication of transporters and channels in cytotoxic astrocyte swelling in hyponatremia, ischemia, trauma and hepatic encephalopathy. Emphasis is put on some salient features of the astrocyte physiology, all related to cell swelling, i.e. predominance of aquaporins, control of K(+) homeostasis and ammonia accumulation during the brain ammonia-detoxifying process.


Assuntos
Astrócitos/fisiologia , Canais Iônicos/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Animais , Aquaporinas/fisiologia , Canais de Cloreto/fisiologia , Encefalopatia Hepática/fisiopatologia , Humanos
15.
Stem Cell Res ; 9(1): 24-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22484511

RESUMO

This study reports an effect of taurine (1-10 mM) increasing markedly (120%) the number of neural precursor cells (NPCs) from adult mouse subventricular zone, cultured as neurospheres. This effect is one of the highest reported for adult neural precursor cells. Taurine-containing cultures showed 73-120% more cells than controls, after 24 and 96 h in culture, respectively. Taurine effect is due to enhanced proliferation as assessed by BrdU incorporation assays. In taurine cultures BrdU incorporation was markedly higher than controls from 1.5 to 48 h, with the maximal difference found at 1.5 h. This effect of taurine reproduced at every passage with the same window time. Taurine effects are not mimicked by glycine, alanine or GABA. Clonal efficiency values of 3.6% for taurine cultures and 1.3% for control cultures suggest a taurine influence on both, progenitor and stem cells. Upon differentiation, the proportion of neurons in control and taurine cultures was 3.1% (±0.5) and 10.2% (±0.8), respectively. These results are relevant for taurine implication in brain development as well as in adult neurogenesis. Possible mechanisms underlying taurine effects on cell proliferation are discussed.


Assuntos
Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Taurina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos
16.
Am J Physiol Cell Physiol ; 301(3): C601-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21613606

RESUMO

With-no-lysine kinase 3 (WNK3) is a member of a subfamily of serine/threonine kinases that modulate the activity of the electroneutral cation-coupled chloride cotransporters. WNK3 activates NKCC1/2 and NCC and inhibits the KCCs. Four splice variants are generated from the WNK3 gene. Our previous studies focused on the WNK3-18a variant. However, it has been suggested that other variants could have different effects on the cotransporters. Thus, the present study was designed to define the effects of all WNK3 variants on members of the SLC12 family. By RT-PCR from a fetal brain library, exons 18b and 22 were separately amplified and subcloned into the original WNK3-18a or catalytically inactive WNK3-D294A to obtain all four potential combinations with and without catalytic activity (18a, 18a+22, 18b, and 18b+22). The basal activity of the cotransporters and the effects of WNK3 isoforms were assessed in Xenopus laevis oocytes coinjected with each of the WNK3 variant cRNAs. In isotonic conditions, the basal activity of NCC and NKCC1/2 were increased by coinjection with any of the WNK3. The positive effects occurred even in hypotonic conditions, in which the basal activity of NKCC1 is completely prevented. Consistent with these observations, when expressed in hypotonicity, all KCCs were active, but in the presence of any of the WNK3 variants, KCC activity was completely reduced. That is, NKCC1/2 and NCC were inhibited, even in hypertonicity, while KCCs were activated, even in isotonic conditions. We conclude that the effects of all WNK3 variants toward SLC12 proteins are similar.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Simportadores/metabolismo , Substituição de Aminoácidos/fisiologia , Animais , Biocatálise , Domínio Catalítico/genética , Humanos , Oócitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Complementar/administração & dosagem , RNA Complementar/genética , Receptores de Droga/genética , Receptores de Droga/metabolismo , Rubídio/metabolismo , Sódio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Membro 2 da Família 12 de Carreador de Soluto , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/genética , Xenopus laevis , Cotransportadores de K e Cl-
17.
Biosci Rep ; 31(6): 489-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21568938

RESUMO

Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na(+)/H(+) exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH(4)Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2-3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.


Assuntos
Apoptose , Tamanho Celular , Receptores ErbB/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Solução Salina Hipertônica/administração & dosagem , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores
18.
Dev Neurosci ; 32(4): 321-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21160187

RESUMO

Taurine addition to cultured embryonic neural precursor cells (NPC) significantly increased cell proliferation [Hernández-Benítez et al., 2010]. The medium used for NPC growing and proliferation is a fetal serum-free medium, and therefore, NPC become taurine depleted. Addition of taurine to the cultured medium fully replenished the cell taurine pool, suggesting the functional expression of a taurine transporter (TauT) in these cells. In the present study, TauT in NPC was functionally characterized and its protein expression and the subcellular distribution of immunoreactivity were determined. ³H-taurine uptake in NPC could be separated into a non-saturable component and a Na(+)/Cl⁻-dependent, saturable component. The saturable component showed an apparent 2:1:1 Na(+)/Cl⁻/taurine stoichiometry, a V(max) of 0.39 ± 0.04 nmol/mg protein/min, and a K(m) of 21.7 ± 2.6 µM. TauT in NPC was strongly inhibited by hypotaurine and ß-alanine (92 and 79%, respectively) and reduced (71%) by γ-aminobutyric acid. TauT protein is expressed in NPC as a single band of about 70 kDa. Essentially all (98.8%) of the neurosphere-forming cells were positive to TauT immunoreactivity. Immunolocalization visualized by confocal microscopy localized TauT predominantly at the cell membrane. TauT was also found at the cytosol and only occasionally at the nuclear membrane. This study represents the first characterization of TauT in NPC.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas de Membrana Transportadoras/biossíntese , Células-Tronco Neurais/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Microscopia Confocal , Ratos
19.
Neurochem Res ; 35(12): 1939-43, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20842422

RESUMO

The decline of taurine content during brain maturation as well as the consequences of taurine deficiency disturbing brain development, suggest its involvement in basic processes of developing brain cells. If taurine participates in cell protection, differentiation or proliferation in the developing brain is as yet unclear. Extensive and solid evidence supports taurine cytoprotective actions, directly or indirectly related to an antioxidant effect. Since redox status and oxidative stress are now implicated in signalling processes regulating cell differentiation and proliferation, the question is raised of whether the taurine antioxidant activity is on the basis of its requirement during brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Taurina/fisiologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células , Humanos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Taurina/farmacologia
20.
J Neurosci Res ; 88(8): 1673-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20029963

RESUMO

Taurine is present in high levels in fetal brain which decrease in the adult, suggesting its role in brain development. In some regions of taurine deficient animals cells show defective migration and the presence of numerous mitotic figures, suggesting a delay in cell proliferation. To know more about the role of taurine in the developing brain cells, the present study investigated whether taurine is a factor involved in proliferation or/and viability of neural progenitor cells (NPC). NPC were obtained from 13.5-days mice embryos mesencephalon, and cultured during 4-5 days to form neurospheres in the presence of EGF plus FGFb (EGF/FGF) or EGF alone. Mesencephalon taurine content (349 mmoles/kg protein) was lost in NPC and recovered after addition of 10 mM taurine to the culture. Neurospheres-forming NPC were over 94% nestin-positive. Taurine increased 38.6% and 43.2% the number of NPC formed in EGF/FGF or EGF conditions, respectively. In secondary neurospheres this increase was 24.6% and 62.1%, in EGF/FGF or EGF cultures respectively. Correspondingly neurospheres size was increased by taurine but neurospheres number was not enhanced. Taurine significantly increased the number of BrdU-positive cells, without affecting cell viability, suggesting proliferation as the mechanism responsible for taurine action increasing NPC. Taurine seems unable to increase the number of beta-III-tubulin-positive cells differentiated from neurospheres after serum addition, and rather an increase in astrocytes was observed. These results point to taurine as a trophic factor contributing to optimize NPC proliferation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Taurina/farmacologia , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Fator de Crescimento Epidérmico/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Mesencéfalo/citologia , Camundongos , Taurina/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...