Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874582

RESUMO

CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma (DLBCL) patient-derived xenograft (PDX) model. Whereas the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy, rather CD70 interaction in cis with the nanoCAR induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9, resulted in dramatically enhanced functionality in the DLBCL PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knock out (KO) CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that WT CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. On the other hand, the gene signature of KO CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products that led to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.

2.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626769

RESUMO

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Diferenciação Celular , Células Dendríticas , Neoplasias Pulmonares , Linfócitos T , Vacinação , Humanos , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos de Neoplasias/imunologia , Diferenciação Celular/imunologia , Idoso , Linfócitos T/imunologia
3.
Front Immunol ; 14: 1188099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350958

RESUMO

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation. Patients with WAS show reduced numbers of peripheral blood T lymphocytes and an altered T-cell receptor repertoire. In vitro, their peripheral T cells show decreased proliferation and cytokine production upon aCD3/aCD28 stimulation. It is unclear whether these T-cell defects are acquired during peripheral activation or are, in part, generated during thymic development. Here, we assessed the role of WASp during T-cell differentiation using artificial thymic organoid cultures and in the thymus of humanized mice. Although CRISPR/Cas9 WAS knockout hematopoietic stem and progenitor cells (HSPCs) rearranged the T-cell receptor and differentiated to T-cell receptor (TCR)+ CD4+ CD8+ double-positive (DP) cells similar to wild-type HSPCs, a partial defect in the generation of CD8 single-positive (SP) cells was observed, suggesting that WASp is involved in their positive selection. TCR repertoire analysis of the DP and CD8+ SP population, however, showed a polyclonal repertoire with no bias toward autoreactivity. To our knowledge, this is the first study of the role of WASp in human T-cell differentiation and on TCR repertoire generation.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich , Síndrome de Wiskott-Aldrich , Humanos , Animais , Camundongos , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Linhagem da Célula , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Diferenciação Celular
4.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939517

RESUMO

In the human thymus, a CD10+ PD-1+ TCRαß+ differentiation pathway diverges from the conventional single positive T cell lineages at the early double-positive stage. Here, we identify the progeny of this unconventional lineage in antigen-inexperienced blood. These unconventional T cells (UTCs) in thymus and blood share a transcriptomic profile, characterized by hallmark transcription factors (i.e., ZNF683 and IKZF2), and a polyclonal TCR repertoire with autoreactive features, exhibiting a bias toward early TCRα chain rearrangements. Single-cell RNA sequencing confirms a common developmental trajectory between the thymic and blood UTCs and clearly delineates this unconventional lineage in blood. Besides MME+ recent thymic emigrants, effector-like clusters are identified in this heterogeneous lineage. Expression of Helios and KIR and a decreased CD8ß expression are characteristics of this lineage. This UTC lineage could be identified in adult blood and intestinal tissues. In summary, our data provide a comprehensive characterization of the polyclonal unconventional lineage in antigen-inexperienced blood and identify the adult progeny.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Adulto , Humanos , Linhagem da Célula , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Diferenciação Celular , Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...