Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X231214840, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988131

RESUMO

Quantifying anatomical and hemodynamical properties of the brain vasculature in vivo is difficult due to limited spatiotemporal resolution neuroimaging, variability between subjects, and bias between acquisition techniques. This work introduces a metabolically inspired vascular synthesis algorithm for creating a digital representation of the cortical blood supply in humans. Spatial organization and segment resistances of a cortical vascular network were generated. Cortical folding and macroscale arterial and venous vessels were reconstructed from anatomical MRI and MR angiography. The remaining network, including ensembles representing the parenchymal capillary bed, were synthesized following a mechanistic principle based on hydrodynamic efficiency of the cortical blood supply. We evaluated the digital model by comparing its simulated values with in vivo healthy human brain measurements of macrovessel blood velocity from phase contrast MRI and capillary bed transit times and bolus arrival times from dynamic susceptibility contrast. We find that measured and simulated values reasonably agree and that relevant neuroimaging observables can be recapitulated in silico. This work provides a basis for describing and testing quantitative aspects of the cerebrovascular circulation that are not directly observable. Future applications of such digital brains include the investigation of the organ-wide effects of simulated vascular and metabolic pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA